• Title/Summary/Keyword: IMO Regulations

Search Result 146, Processing Time 0.021 seconds

Numerical Study on the Effect of the Arrangement Type of Rotor Sail on Lift Formation (로터세일의 배열 형태가 양력 형성에 미치는 영향에 관한 수치해석적 연구)

  • Jung-Eun Kim;Dae-Hwan Cho;Chang-Yong Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • Recently, the international community, including the International Maritime Organization (IMO), has strengthened regulations on air pollution emissions of ships, and eco-friendly ships are actively being developed to reduce exhaust gas emissions. Among them, rotor sail (RS), a wind-assisted ship propulsion system, is attracting attention again. RS is a cylindrical device installed on the ship deck, that generates hydrodynamic lift using a magnus effect. This is a next generation eco-friendly auxiliary propulsion technology, and Enercon company, which developed RS-applied ships, announced that fuel savings of more than 30% are possible. In this study, optimal installation conditions such as RS spacing and arrangement type were selected when multiple RSs were installed on ships. AR=5.1, SR=1.0, and De/D was fixed at 2.0 according to the RS arrangement, and the wind direction was considered only for the unidirectional +y-axis. Regarding arrangement conditions, five conditions were set at 3D intervals in the +x-axis direction from 3D to 15D and five conditions in the +y-axis direction from 5D to 25D. CL, CD and aerodynamic efficiency (CL/CD) were compared according to the square(□) and diamond(◇) shape arrangements. Consequently, the effect of RS on the longitudinal distance was not significantly different. However, in the case of RS flow characteristics according to the transverse distance, the interaction effect of RS was the greatest when the two RSs almost matched the wind direction. In the case of the RS flow characteristics according to the arrangement, notably, when the wind blew in the forward (0°) direction, the diamond (◇) arrangement was least affected by the backward flow between RSs.

Optimum Selection of BWMS type by AHP for BWMS Development (선박평형수 처리장치 개발시 AHP 기법을 이용한 최적 처리방식 선정에 관한 연구)

  • Lee, Sang Won;Kim, Dong Joon;Seo, Won Chul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Ballast water in ship operation is essential for a safe voyage. However ballast water can contain unwanted organisms that are the cause of disturbing the ecosystem by the transfer of potential invasive species. To prevent the destruction of the environment, the International Convention for the Control and Management of Ship's Ballast Water and Sediments(BWM Convention) was adopted in 2004. BWMS (Ballast Water Management System) has been developed to prevent the transportation of organisms to another region in order to fulfill the requirements IMO (International Maritime Organization) regulations. Nowadays there are about 50 approved Ballast Water Management Systems of various types globally. The most common BWMS types are UV (Ultra Violet), Electrolysis and Ozone. Among these types there are many difficulties in determining the optimum type of BWMS which can be suitable for the user and designer's requirements. The main objective of this research is to select the best BWMS type by using AHP. To apply AHP, the most important criteria for the BWMS development are derived by users and designers. From our results, we can give a guide BWMS type to the developers of BWMS.

Ship Sewage Treatment Using Fixed Media Method (고정식 메디아법을 이용한 선박의 오폐수 처리)

  • Han, Sang-Hwa;Lee, Dea-Ho;Nyung, Bu-Nyung;Bae, Sang-Bum;Yoon, Jong-Mun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.99-104
    • /
    • 2010
  • The purpose of this study is to develop Sewage Treatment Plant that treat sewage which occurred in ship using fixed media method and to consider applicable to the Pilot Scale device of the STP regulations in MLTM(Ministry of Land, Transport and Maritime Affairs) and MEPC(Marine Environment Protection Committee). In test results, pH geometric mean was 7.68, $BOD_5$(Biochemical Oxygen Demand) geometric mean was 7.28 mg/l, $COD_{cr}$(Chemical Oxygen Demand) geometric mean was 48.39 mg/l, TSS(Total Suspended Solid) geometric mean was 18.00/l, Residual chlorine geometric mean was 0.19 mg/l, and E. coli geometric mean was 1CFU/100 ml. In addition, about 97.4% of $BOD_5$ was reduced, the $COD_{cr}$ reduction averaged 96.4%and the TSS reduction averaged 97.6%. STP have been determined by the MLTM and MEPC regulation of the marine pollution prevention equipment for performance testing product.

A Critical Review of the Act on Vessel Traffic Services (선박교통관제에 관한 법률에 대한 비판적 고찰)

  • Shin, Dong-Ho;Ji, Seung-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.336-345
    • /
    • 2020
  • Vessel Traf ic Services (VTS) is a system for ship safety and accident prevention. The International Maritime Organization (IMO), the International Association of Marine Aids to Navigation and the Lighthouse Authorities (IALA) established regulations related to VTS from an early stage. On December 3, 2019, South Korea enacted a special act called the "Act on Vessel Traffic Services (VTS Act)," which will take ef ect on June 4, 2020. In this paper, the background of this act's enactment is examined and its provisions are critically reviewed. In particular, the study intensively examines the reasons the immunity provisions for the VTS operator were removed and the current direction of improvements to the VTS Act is presented in terms of its feasibility. Most countries that do not have an Act related to VTS and its operator, refer to that of Korea. Therefore, it is necessary to reinforce the structures and definition of the VTS Act, as well as the immunity provisions for the VTS operator. The latter were removed during the National Assembly's legislation process, but were included in the initial bill, and should be reflected in subsequent revisions of the VTS Act.

A Study on Estimating Air Pullution in the Port of Incheon (인천항의 대기오염물질 배출량 산정 연구)

  • Lee, Jeong-Uk;Lee, Hyang-Suk
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.143-157
    • /
    • 2021
  • International organizations such as the World Health Organization, the Organization for Economic Development and Cooperation, and major developed countries recognize the seriousness of air pollution. International organizations such as the International Maritime Organization have also implemented various regulations to reduce air pollution from ships. In line with this international trend, the government has also enacted a special law on improving air quality in port areas, and is making efforts to reduce air pollution caused by ports. The purpose of the Special Act is to implement comprehensive policies to improve air quality in port areas. This study sought to identify the emissions of each source of air pollutants originating from the port and prepare basic data on setting the policy priorities. To this end, the analysis was conducted in six categories: ships, vehicles, loading and unloading equipment, railways, unloading/wild ash dust, road ash dust, and the methodology presented by the European Environment Agency(EEA) and the United States Environmental Protection Agency(EPA). The pollutants subject to analysis were analyzed for carbon monoxide(CO), nitrogen oxides (NOX), sulfur oxides(SOX), total airborne materials(TSP), particulate matter(PM10, PM2.5), and ammonia(NH3). The analysis showed a total of 7,122 tons of emissions. By substance, NOX accounted for the largest portion of 5,084 tons, followed by CO (984 tons), SOX (530 tons), and TSP (335 tons). By source of emissions, ships accounted for the largest portion with 4,107 tons, followed by vehicles with 2,622 tons, showing high emissions. This proved to be the main cause of port air pollution, with 57.6% and 36.8% of total emissions, respectively, suggesting the need for countermeasures against these sources.

A Study on the Application of Hybrid Propulsion System for Fishing Vessels (어선용 복합 추진시스템 적용을 위한 연구)

  • Jung-Ho Noh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1238-1243
    • /
    • 2022
  • The International Maritime Organization is at the forefront of strengthening gas emission regulations for ships globally. The Korean government needs to apply measures to reduce emissions, such as setting a basic roadmap for greenhouse gas reduction. In addition, there is an urgent need to introduce a new efficient propulsion system that can reduce gas emissions. This includes applications to fishing vessels, which account for 90.6% of the greenhouse gas emissions from ships sailing along domestic coasts. In this study, an electric-combined propulsion system applicable to domestic coastal fishing vessels was developed. The target ship to which the electric-combined propulsion system could be applied was selected. A simulation system was constructed using MATLAB/Simulink to compare the expected fuel consumption when applying the developed complex electric propulsion system to the propulsion system mounted on the selected target fishing vessel. Through simulations, the differences in fuel consumption between the mechanical propulsion system and the electric hybrid propulsion system (both when charging and not charging the battery on land) were confirmed. The results show that fuel consumption can be decreased by approximately 13% and 16% when applying the electric-combined propulsion system.