• Title/Summary/Keyword: IMM method

Search Result 165, Processing Time 0.02 seconds

Effect of Amino Acids Addition on Stability and Antioxidative Property of Anthocyanins (아미노산의 첨가가 anthocyanins 색소의 안정성과 항산화능력에 미치는 영향)

  • Oh, Ju-Kyoung;Imm, Jee-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.562-566
    • /
    • 2005
  • Effects of amino acids (Arg, Lys, Gly, Ile, Glu, Asp, and Met) on the color intensity, stability and antioxidative properties of anthocyanins extracted from grape skins were investigated. Intensity of anthocyanins was significantly increased by the addition of Asp. Except for basic amino acids such as Arg and Lys, stabilities of anthocyanins were significantly improved by the addition of other amino acids including neutral, acidic and sulfur containing amino acids during the storage at $30^{\circ}C$ at pH 3.5. In case of control anthocyanins was remained unchanged the intensity of red color decreased significantly during the storage whereas their antioxidative activity were unchanged. Although effects of amino acids addition on electron donating abilities of anthocyanins were not differentiated by DPPH (2,2-diphenyl-1-picrylhydrazyl) method, the addition of Asp or Met resulted in increased ferric reducing ability which measured by FRAP (ferric reducing ability of plasma) assay.

On the kinematic coupling of 1D and 3D finite elements: a structural model

  • Yue, Jianguang;Fafitis, Apostolos;Qian, Jiang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.192-211
    • /
    • 2010
  • In most framed structures the nonlinearities and the damages are localized, extending over a limited length of the structural member. In order to capture the details of the local damage, the segments of a member that have entered the nonlinear range may need to be analyzed using the three-dimensional element (3D) model whereas the rest of the member can be analyzed using the simpler one-dimensional (1D) element model with fewer degrees of freedom. An Element-Coupling model was proposed to couple the small scale solid 3D elements with the large scale 1D beam elements. The mixed dimensional coupling is performed imposing the kinematic coupling hypothesis of the 1D model on the interfaces of the 3D model. The analysis results are compared with test results of a reinforced concrete pipe column and a structure consisting of reinforced concrete columns and a steel space truss subjected to static and dynamic loading. This structure is a reduced scale model of a direct air-cooled condenser support platform built in a thermal power plant. The reduction scale for the column as well as for the structure was 1:8. The same structures are also analyzed using 3D solid elements for the entire structure to demonstrate the validity of the Element-Coupling model. A comparison of the accuracy and the computational effort indicates that by the proposed Element-Coupling method the accuracy is almost the same but the computational effort is significantly reduced.

Measurement of Rainfall Intensity Using a Weighting Tipping Bucket Raingauge (중량식 전도형 우량계를 이용한 강우강도 측정)

  • Kim Hyun Chul;Lee Bu Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.4
    • /
    • pp.211-217
    • /
    • 2004
  • The instrument used in this study consists of a lkg capacity loadcell and a Imm tipping bucket rain gauge. There are two signals: one is the weight of the water in the tipping bucket and the other is the pulse from the reversing mechanism of the tipping bucket. The loadcell measures the weight of water with a 0.0lmm resolution up to 1mm rainfall and the bucket reverses beyond 1mm. From this point, a pulse signal generates and the loadcell starts measuring the weight again. A field test was carried out with the range of rainfall intensity from 42mm/h to 250mm/h. The result shows an error range from -2.2% to + 2.6% in 12 measurement cases with a rainfall of l00mm or more. This result satisfies the WMO recommendation for rainfall intensity instrumentation which allows a 5% range. In a field experiment during 17 to 19 August, 2004, more than 100mm/h rainfall intensity was observed by this instrument, confirming that our instrument has a sufficient capacity of rainfall intensity measurement under extreme conditions like Jangma (Bai-u season). Compared with existing commercial models which employ a water drop measurement method, our method can give a practical solution for diagnostic check of remote rain gauges using two independent signals.

A Study on Human Sensitivity Engineered Internal Landscape by Lighting Colors in Tunnels using LISREL Model (LISREL 모헝을 이용한 조명색채별 감성공학적 터널 내부경관 연구)

  • Park, Il-Dong;Ji, Kil-Ryong;Imm, Sung-bin;Kum, Ki-Jung
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.97-106
    • /
    • 2004
  • It is a Known fact that driving through long tunnel increases possibility of traffic accident because of psychological feeling of insecurity and dispersion of drivers' concentration since driving in narrow and limited space for a longtime. It, therefore, results in raising transportation and environment problems, such as traffic accident difficult to be properly dealt with and ventilation. This study aims at proposing a method of augmenting driving amenity by improving the internal lighting facilities in the tunnel. The study is conducted by investigating internal landscapes of tunnels by lighting colors, which are currently being operated. The Color Planning System (CPS), developed by SHARP Co. Ltd, is exploited for selecting adjective that express the sensitivity image on lighting colors. The CPS is an example that applies to sensitivity of human body for products design development. The CPS takes the following process to define the color : 1) expressing "Pvoduct's Image" as "A Word (adjective)" and 2) referring "A Word" to "Image Scale", and 3) determining the color through this "Image Panel". The study is processed by making a questionnaire using the semantic differential (SD) scale, grasping the consciousness structure of experimental persons through the Factor Analysis, and building a model in which dependent variable is "Degree of Preference" about internal landscape in tunnel using LISREL(LInear Structural RELations).

Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target (FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper presents the intelligent tracking algorithm for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. Fuzzy c-mean clustering and predicted impact point are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by fuzzy c-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. The filtering process in a series of the algorithm which estimates the target value recognize the nonlinear maneuvering target as linear one because the filter recognize only remained noise by extracting acceleration from the positional error. After filtering process, we get the estimates target by compensating extracted acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. To maximize the effectiveness of the proposed system, we construct the multiple model structure. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.