• Title/Summary/Keyword: IMCD cells

Search Result 6, Processing Time 0.02 seconds

Molecular Analysis of AQP2 Promoter. I. cAMP-dependent Regulation of Mouse AQP2 Gene

  • Park, Mi-Young;Lee, Yong-Hwan;Bae, Hae-Rahn;Lee, Ryang-Hwa;Lee, Sang-Ho;Jung, Jin-Sup
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.157-164
    • /
    • 1999
  • To determine molecular mechanisms of Aquaporin-CD (AQP2) gene regulation, the promoter region of the AQP2 gene was examined by transiently transfecting a promoter-luciferase reporter fusion gene into mouse renal collecting duct cell lines such as mIMCD-3, mIMCD-K2, and M-1 cells, and NIH3T3 mouse embryo fibroblast cells. PCR-Southern analysis reveals that mIMCD-3 and mIMCD-K2 cells express AQP2, but M-1 and NIH3T3 cells do not, and that the treatment with cpt-cAMP $(400\;{\mu}M)$) or forskolin/isobutylmethylxanthine (IBMX) increased the AQP2 expression in IMCD cells. In both IMCD and NIH3T3 cells, the constructs containing the promoter of AQP2 gene showed promoter activities, indicating lack of tissue-specific element in the 1.4 kb 5'-flanking region of the mouse AQP2 gene. Luciferase activity in the IMCD cells transfected with the construct containing 5-flanking region showed responsiveness to cpt-cAMP, indicating that the 1.4 kb 5'-flanking region contains the element necessary for the regulatory mechanism by cAMP. The promoter-luciferase constructs which do not have a cAMP-responsible element (CRE) still showed the cAMP responsiveness in IMCD cells, but not in NIH3T3 cells. Increase in medium osmolarity did not affect AQP2 promoter activity in mIMCD-K2 cells. These results demonstrate that AQP2 gene transcription is increased with cAMP treatment through multiple motifs including CRE in the 5'-flanking region of the gene in vitro, and the regulatory mechanism may be important for in vivo regulation of AQP2 expression.

  • PDF

Berberine ameliorates lipopolysaccharide-induced inflammatory responses in mouse inner medullary collecting duct-3 cells by downregulation of NF-κB pathway

  • Dong‑Gu Kim;Ji‑Won Choi;Il‑Joo Jo;Myoung‑Jin Kim;Ho‑Sub Lee;Seung‑Heon Hong;Ho‑Joon Song;Gi‑Sang Bae;Sung‑Joo Park
    • Molecular Medicine Reports
    • /
    • v.21 no.1
    • /
    • pp.258-266
    • /
    • 2020
  • The major role of inner medullary collecting duct (IMCD) cells is to maintain water and sodium homeostasis. In addition to the major role, it also participates in the protection of renal and systemic inflammation. Although IMCD cells could take part in renal and systemic inflammation, investigations on renal inflammation in IMCD cells have rarely been reported. Although berberine (BBR) has been reported to show diverse pharmacological effects, its anti-inflammatory and protective effects on IMCD cells have not been studied. Therefore, in the present study, we examined the anti-inflammatory and protective effects of BBR in mouse IMCD-3 (mIMCD-3) cells against lipopolysaccharide (LPS). An MTT assay was carried out to investigate the toxicity of BBR on mIMCD-3 cells. Reverse transcription quantitative-PCR and western blotting were performed to analysis pro-inflammatory molecules and cytokines. Mechanisms of BBR were examined by western blotting and immunocytochemistry. According to previous studies, pro-inflammatory molecules, such as inducible nitric oxide synthase and cyclooxygenase-2, and pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α are increased in LPS-exposed mIMCD-3 cells. However, the production of these pro-inflammatory molecules is significantly inhibited by treatment with BBR. In addition, BBR inhibited translocation of nuclear factor (NF)-κB p65 from the cytosol to the nucleus, and degradation of inhibitory κ-Bα in LPS-exposed mIMCD-3 cells. In conclusion, BBR could inhibit renal inflammatory responses via inhibition of NF-κB signaling and ultimately contribute to amelioration of renal injury during systemic inflammation.

Asymmetrical Distribution of P2Y Nucleotide Receptors in Rabbit Inner Medullary Collecting Duct Cells

  • Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.311-318
    • /
    • 2000
  • We cultured the rabbit inner medullary collecting duct (IMCD) cells as monolayers on collagen-coated membrane filters, and investigated distribution of the P2Y receptors by analyzing nucleotide-induced short circuit current $(I_{sc})$ responses. Exposure to different nucleotides of either the apical or basolateral surface of cell monolayers stimulated $I_{sc}.$ Dose-response relationship and cross-desensitization studies suggested that at least 3 distinct P2Y receptors are expressed asymmetrically on the apical and basolateral membranes. A $P2Y_2-like$ receptor, which responds to UTP and ATP, is expressed on both the apical and basolateral membranes. In addition, a uracil nucleotide receptor, which responds to UDP and UTP, but not ATP, is expressed predominantly on the apical membrane. In contrast, a $P2Y_1-like$ receptor, which responds to ADP and 2-methylthio-ATP, is expressed predominantly on the basolateral membrane. These nucleotides stimulated intracellular cAMP production with an asymmetrical profile, which was comparable to that in the stimulation of $I_{sc}.$ Our results suggest that the adenine and uracil nucleotides can interact with different P2Y nucleotide receptors that are expressed asymmetrically on the apical and basolateral membranes of the rabbit IMCD cells, and that both cAMP- and $Ca^{2+}-dependent$ signaling mechanisms underlie the stimulation of $I_{sc}$.

  • PDF

Mxi1 influences cyst formation in three-dimensional cell culture

  • Yook, Yeon-Joo;Yoo, Kyung-Hyun;Song, Seon-Ah;Seo, Min-Ji;Ko, Je-Yeong;Kim, Bo-Hye;Lee, Eun-Ji;Chang, Eun-Sun;Woo, Yu-Mi;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.189-193
    • /
    • 2012
  • Cyst formation is a major characteristic of ADPKD and is caused by the abnormal proliferation of epithelial cells. Renal cyst formation disrupts renal function and induces diverse complications. The mechanism of cyst formation is unclear. mIMCD-3 cells were established to develop simple epithelial cell cysts in 3-D culture. We confirmed previously that Mxi1 plays a role in cyst formation in Mxi1-deficient mice. Cysts in Mxi1 transfectanted cells were showed by collagen or mebiol gels in 3-D cell culture system. Causative genes of ADPKD were measured by q RT-PCR. Herein, Mxi1 transfectants rarely formed a simple epithelial cyst and induced cell death. Overexpression of Mxi1 resulted in a decrease in the PKD1, PKD2 and c-myc mRNA relating to the pathway of cyst formation. These data indicate that Mxi1 influences cyst formation of mIMCD-3 cells in 3-D culture and that Mxi1 may control the mechanism of renal cyst formation.

Renal Expression of TonEBP and Urea Transporter in the Water-deprived Mongolian Gerbil(Meriones unguiculatus) (절수시 Mongolian Gerbil 콩팥에서 TonEBP와 Urea transporter의 발현 변화)

  • Park, Yong-Deok;Kim, Sung-Joong;Jung, Ju-Young
    • Applied Microscopy
    • /
    • v.37 no.4
    • /
    • pp.271-280
    • /
    • 2007
  • Tonicity-responsive enhancer binding protein(TonEBP) is a transcriptional factor essential in the function and development of the renal medulla. TonEBP plays a critical role in protecting renal medullary cells from the deleterious effect of hypertonicity. TonEBP is a key regulator of urinary concentration via stimulation of transcription of urea transporter(UT) in a manner independent of vasopressin. UT in the renal inner medulla is important for the conservation of body water due to its role in the urine concentrating mechanism. Mongolian gerbil(Meriones unguiculatus) has been as an model animal for studying the neurological disease such as stroke and epilepsy because of the congenital incomplete in Willis circle, as well as the investigation of water metabolism because of the long time-survival in the condition of water-deprived desert condition, compared with other species animal. In this study, we divide 3 groups of which each group include the 5 animals. In the study of 7 or 14 days water restricted condition, we investigated the TonEBP and UT-A by using a immunohistochemistry in the kidney. In the normal kidney, the distribution of TonEBP is generally localized on nuclei of inner medullary cells. Nuclear distribution of TonEBP is generally increased throughout the medulla in 7 and 14 days dehydrated group compared with control group. Increased nuclear localization was particularly dramatic in thin limbs. In control groups, UT-A was expressed in inner stripe of outer medulla(ISOM) and inner medulla(IM). UT-A was present in the terminal part of the short-loop of descending thin limbs (DTL) in ISOM and also present in the inner medullary collecting duct(IMCD), where the intensity of it gradually increased toward the papillary tip. In the dehydrated kidney, UT-A immunoreactivity was increased in the short-loop of DTL in ISOM and in the long-loop of DTL in the initial part of IM, where was expressed moderate positive reaction in the normal kidney. Also it was up regulated in the IMCD in initial & middle part of IM. However UT-A down regulated in the IMCD, where the intensity of it gradually decreased toward the papillary tip. These findings suggest that increased levels of TonEBP in medulla and UT-A in shot-loop of DTL and IMCD play a important role for maintain fluid balance in the water-deprived mongolian gerbil kidney.

Expression of UT-A in Rat Kidney: Ultrastructural Immunocytochemistry (흰쥐 콩팥에서 요소운반체-A의 발현: 미세구조적 면역세포화학법)

  • Lim, Sun-Woo;Jung, Ju-Young;Kim, Wan-Young;Han, Ki-Hwan;Cha, Jung-Ho;Chung, Jin-Woong;Kim, Jin
    • Applied Microscopy
    • /
    • v.32 no.2
    • /
    • pp.91-105
    • /
    • 2002
  • Urea transport in the kidney is mediated by a family of transporter proteins that includes renal urea transporters (UT-A) and erythrocyte urea transporters (UT-B). The cDNA of five isoforms of rat UT-A, UTA1, UT-A2, UT-A3, UT-A4, and UT-A5 have been cloned. The purpose of this study was to examine the expression of UT-A (L194), which marked UT-A1, UT-A2 and UT-A4. Male Sprague-Dawley rats, weighing approximately 200 g, were divided into three group: control rats had free access to water, dehydrated rats were deprived of water for 3 d, and water loaded rats had free access to 3% sucrose water for 3 d before being killed. The kidneys were preserved by in vivo perfusion through the abdominal aorta with the 2% paraformaldehyde-lysine- periodate (PLP) or 8% paraformaldehyde solution for 10 min. The sections were processed for immunohistochemical studies using pre-embedding immunoperoxidase method and immunogold method. In the normal rat kidney, UT-A1 was expressed intensely in the cytoplasm of the inner medullary collecting duct (IMCD) cell and UT-A2 was expressed on the plasma membrane of the terminal portion of the shortloop descending thin limb (DTL) cells (type I epithelium) and of the long-loop DTL cells (type II epithelium) in the initial part of the inner medulla. Immunoreactivity for UT-A1 in the IMCD cells, was decreased in dehydrated animals whereas strongly increased in water loaded animals compared with control animals. In the short-loop DTL, immunoreactivity for UT-A2 was increased in intensity in both dehydrated and water loaded groups. However, in the long-loop DTL of the outer part of the inner medulla, immunoreactivity for UT-A2 was markedly increase in intensity in dehydrated group, but not in water loaded group. In conclusion, in the rat kidney, UT-A1 is located in the cytoplasm of IMCD cells, whereas UT-A2 is located in the plasma membrane of both the short-and long-loop DTL cells. Immunohistochemistry studies revealed that UT-A1 and UT-A2 may have a different role in urea transport and are regulated by different mechanisms.