• Title/Summary/Keyword: IL-17R

Search Result 283, Processing Time 0.019 seconds

Breeding of 'Joyskin' Pear as fruit for Eating with the Skin (껍질째 먹는 배 '조이스킨' 육성)

  • Kim, Yoon-Kyeong;Kang, Sam-Seok;Cho, Kwang-Sik;Won, Kyung-Ho;Shin, Il-Sheob;Kim, Myung-Su;Ma, Kyeong-Bok;Lee, In Bog
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.959-965
    • /
    • 2016
  • In 1994, a new cultivar 'Joyskin' was created from a cross between the cultivars 'Whangkeumbae' and 'Waseaka' at the Pear Research Institute of the National Institute of Horticultural and Herbal Science, Rural Development Administration. In 2006, the 'Joyskin' was selected from among the 317 seedlings resulting from the cross for its skin and taste qualities. Regional adaptation tests were conducted in nine regions and in ten experimental plots from 2006 to 2011. The cultivar was named in 2011. 'Joyskin' showed a vigorous growth habit and semi-spread characteristics similar to 'Whangkeumbae'. The average full bloom date for 'Joyskin' was April 21st, which was also similar to 'Whangkeumbae'. The optimum fruit ripening time was September 6-8th, which was six or eight days earlier than 'Whangkeumbae'. The fruit was round in shape and the skin was a golden yellow color at maturity. The average fruit weight was 320 g and the flesh firmness was $2.5kg/8mm{\varphi}$. The firmness of the fruit skin determined by a blade-type plunger of texture analyzer was 22.9 N, which was significantly different from that of 'Whangkeumbae' 29.9N. Stone cell analysis of 'Joyskin' by phloroglucinol-HCl, showed that 'Joyskin' stone cells were small in size and few in numbers cpmpared to those of cultivars of was 'Manpungbae', 'Niitaka', and 'Whangkeumbae'. The patent application for 'Joyskin' was submitted in April, 2012 (Grant No. 2012-337). In 2016, 'Joyskin' (Grant No. 5895) was registered as a separate record, with uniformity and stability per Korean Seed Industry Law.

Possibility of Repeated Use of Elite Donor Cows for Mass Production of OPU-Derived Embryos (OPU 유래 수정란의 대량생산을 위한 고능력 공란우 반복사용 가능성에 관한 연구)

  • Jin, Jong-In;Choi, Byung-Hyun;Kim, Seong-Su;Park, Bun-Young;Lee, Jung-Gyu;Kong, Il-Keun
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.149-159
    • /
    • 2015
  • This study was designed to know the possibility in repeat uses of elite donor cows for getting mass production of OPU-derived embryo production (OPU-IVP). Ultrasound transvaginal ovum pick-up (OPU) performed in 6 Korean native cows was aged 4 to 10 years old. The aspiration of immature oocytes for OPU derived embryo was carried out 2 times per week, and OPU-IVP of $1^{st}$ period was carried out 22~48 sessions from each donors. And the break time for OPU-IVP of $2^{nd}$ period after $1^{st}$ OPU from each donors were 2~25 months. The OPU-IVP of $2^{nd}$ period each donors conducted total 15~65 times for 2~8 months by an ultrasonographic, was guided follicular aspiration system. The average numbers of collected oocytes, grade 1 + grade 2(G1+G2) oocytes and cleavage embryo from $1^{st}$ period OPU-IVP were significantly differences between donors (p<0.05). Total collected oocytes of donor D were significantly higher compared with donors of A, B, C, E and F (average 17.0 per session vs. 11.2, 10.1, 8.5, 10.2 and 9.6; p<0.05) and also oocytes of G1+G2 were significantly higher compared with r A and D and subsequently to donors of B, C, E and F (average 7.9 and 8.5 per session vs. 5.0, 2.7, 6.0 and 1.6; p<0.05). Cleavage rate of donor D was significantly higher compared with donors of A, B, C, E and F (average 13.1 per session vs. 10.1, 9.1, 6.9, 8.9 and 6.7; p<0.05). The average numbers of OPU-IVP for $1^{st}$ period was significantly higher from donors of B, D and E than those from donors of A, C and F (average 6.5, 7.1 and 6.5 per session vs. 3.5, 4.2 and 2.8; p<0.05). The possibility investigation of $2^{nd}$ OPU-IVP was carried out after 2~25 months rest periods from $1^{st}$ period OPU session. Total average numbers of collected oocytes, cleavages and blastocyst development rates were significantly higher from $1^{st}$ period OPU compared with $2^{nd}$ period one (p<0.05). The OPU-IVP efficiency by break for more embryo production from elite cow was analysis comparing without rest of donor A, under 6 months rest period as B and over 6 months rest period as C and then the average numbers of collected oocytes, cleavages and blastocysts were significantly higher from A group (11.8, 9.5 and 5.2 per session) than those from B and C groups (7.9, 6.2 and 2.6 vs. 9.2, 7.5 and 3.9, p<0.05), and also C group was significantly higher than B group. In conclusion, $1^{st}$ period OPU-IVP was more efficient compared with $2^{nd}$ period repeated uses of donor, and the break times for additional production of embryo on donor were needed more than over 6 months after $1^{st}$ period OPU-IVP. This repeating uses of elite donor cows given more emphasis for getting the opportunity on mass production of elite cow OPU-IVP embryo should be increased G1+G2 possibility of genetic improvement of livestock within short period.

Optimization of Medium for the Carotenoid Production by Rhodobacter sphaeroides PS-24 Using Response Surface Methodology (반응 표면 분석법을 사용한 Rhodobacter sphaeroides PS-24 유래 carotenoid 생산 배지 최적화)

  • Bong, Ki-Moon;Kim, Kong-Min;Seo, Min-Kyoung;Han, Ji-Hee;Park, In-Chul;Lee, Chul-Won;Kim, Pyoung-Il
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.135-148
    • /
    • 2017
  • Response Surface Methodology (RSM), which is combining with Plackett-Burman design and Box-Behnken experimental design, was applied to optimize the ratios of the nutrient components for carotenoid production by Rhodobacter sphaeroides PS-24 in liquid state fermentation. Nine nutrient ingredients containing yeast extract, sodium acetate, NaCl, $K_2HPO_4$, $MgSO_4$, mono-sodium glutamate, $Na_2CO_3$, $NH_4Cl$ and $CaCl_2$ were finally selected for optimizing the medium composition based on their statistical significance and positive effects on carotenoid yield. Box-Behnken design was employed for further optimization of the selected nutrient components in order to increase carotenoid production. Based on the Box-Behnken assay data, the secondary order coefficient model was set up to investigate the relationship between the carotenoid productivity and nutrient ingredients. The important factors having influence on optimal medium constituents for carotenoid production by Rhodobacter sphaeroides PS-24 were determined as follows: yeast extract 1.23 g, sodium acetate 1 g, $NH_4Cl$ 1.75 g, NaCl 2.5 g, $K_2HPO_4$ 2 g, $MgSO_4$ 1.0 g, mono-sodium glutamate 7.5 g, $Na_2CO_3$ 3.71 g, $NH_4Cl$ 3.5g, $CaCl_2$ 0.01 g, per liter. Maximum carotenoid yield of 18.11 mg/L was measured by confirmatory experiment in liquid culture using 500 L fermenter.