• 제목/요약/키워드: IL-17A

검색결과 2,456건 처리시간 0.031초

Effect of the anti-IL-17 antibody on allergic inflammation in an obesity-related asthma model

  • Liang, Lin;Hur, Jung;Kang, Ji Young;Rhee, Chin Kook;Kim, Young Kyoon;Lee, Sook Young
    • The Korean journal of internal medicine
    • /
    • 제33권6호
    • /
    • pp.1210-1223
    • /
    • 2018
  • Background/Aims: The co-occurrence of obesity aggravates asthma symptoms. Diet-induced obesity increases helper T cell (TH) 17 cell differentiation in adipose tissue and the spleen. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pravastatin can potentially be used to treat asthma in obese patients by inhibiting interleukin 17 (IL-17) expression. This study investigated the combined effects of pravastatin and anti-IL-17 antibody treatment on allergic inflammation in a mouse model of obesity-related asthma. Methods: High-fat diet (HFD)-induced obesity was induced in C57BL/6 mice with or without ovalbumin (OVA) sensitization and challenge. Mice were administered the anti-IL-17 antibody, pravastatin, or both, and pathophysiological and immunological responses were analyzed. Results: HFD exacerbated allergic airway inflammation in the bronchoalveolar lavage fluid of HFD-OVA mice as compared to OVA mice. Blockading of the IL-17 in the HFD-OVA mice decreased airway hyper-responsiveness (AHR) and airway inflammation compared to the HFD-OVA mice. Moreover, the administration of the anti-IL-17 antibody decreased the leptin/adiponectin ratio in the HFD-OVA but not the OVA mice. Co-administration of pravastatin and anti-IL-17 inhibited airway inflammation and AHR, decreased goblet cell numbers, and increased adipokine levels in obese asthmatic mice. Conclusions: These results suggest that the IL-17-leptin/adiponectin axis plays a key role in airway inflammation in obesity-related asthma. Our findings suggest a potential new treatment for IL-17 as a target that may benefit obesity-related asthma patients who respond poorly to typical asthma medications.

IL-17A Secreted by Th17 Cells Is Essential for the Host against Streptococcus agalactiae Infections

  • Chen, Jing;Yang, Siyu;Li, Wanyu;Yu, Wei;Fan, Zhaowei;Wang, Mengyao;Feng, Zhenyue;Tong, Chunyu;Song, Baifen;Ma, Jinzhu;Cui, Yudong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.667-675
    • /
    • 2021
  • Streptococcus agalactiae is an important bacterial pathogen and causative agent of diseases including neonatal sepsis and meningitis, as well as infections in healthy adults and pregnant women. Although antibiotic treatments effectively relieve symptoms, the emergence and transmission of multidrug-resistant strains indicate the need for an effective immunotherapy. Effector T helper (Th) 17 cells are a relatively newly discovered subpopulation of helper CD4+ T lymphocytes, and which, by expressing interleukin (IL)-17A, play crucial roles in host defenses against a variety of pathogens, including bacteria and viruses. However, whether S. agalactiae infection can induce the differentiation of CD4+ T cells into Th17 cells, and whether IL-17A can play an effective role against S. agalactiae infections, are still unclear. In this study, we analyzed the responses of CD4+ T cells and their defensive effects after S. agalactiae infection. The results showed that S. agalactiae infection induces not only the formation of Th1 cells expressing interferon (IFN)-γ, but also the differentiation of mouse splenic CD4+ T cells into Th17 cells, which highly express IL-17A. In addition, the bacterial load of S. agalactiae was significantly increased and decreased in organs as determined by antibody neutralization and IL-17A addition experiments, respectively. The results confirmed that IL-17A is required by the host to defend against S. agalactiae and that it plays an important role in effectively eliminating S. agalactiae. Our findings therefore prompt us to adopt effective methods to regulate the expression of IL-17A as a potent strategy for the prevention and treatment of S. agalactiae infection.

HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines

  • Seo, Min-Duk;Kang, Tae-Jin;Lee, Chang-Hoon;Lee, Ai-Young;Noh, Min-Soo
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.171-176
    • /
    • 2012
  • HaCaT cells are the immortalized human keratinocytes and have been extensively used to study the epidermal homeostasis and its pathophysiology. T helper cells play a role in various chronic dermatological conditions and they can affect skin barrier homeostasis. To evaluate whether HaCaT cells can be used as a model cell system to study abnormal skin barrier development in various dermatologic diseases, we analyzed the gene expression profile of epidermal differentiation markers of HaCaT cells in response to major T helper (Th) cell cytokines, such as $IFN{\gamma}$, IL-4, IL-17A and IL-22. The gene transcriptional profile of cornified envelope-associated proteins, such as filaggrin, loricrin, involucrin and keratin 10 (KRT10), in HaCaT cells was generally different from that in normal human keratinocytes (NHKs). This suggests that HaCaT cells have a limitation as a model system to study the pathophysiological mechanism associated with the Th cell cytokine-dependent changes in cornified envelope-associated proteins which are essential for normal skin barrier development. In contrast, the gene transcription profile change of human ${\beta}2$-defensin (HBD2) in response to $IFN{\gamma}$, IL-4 or IL-17A in HaCaT cells was consistent with the expression pattern of NHKs. $IFN{\gamma}$ also up-regulated transglutaminase 2 (TGM2) gene transcription in both HaCaT cells and NHKs. As an alternative cell culture system for NHKs, HaCaT cells can be used to study molecular mechanisms associated with abnormal HBD2 and TGM2 expression in response to $IFN{\gamma}$, IL-4 or IL-17A.

Reduced Interleukin-17 and Transforming Growth Factor Beta Levels in Peripheral Blood as Indicators for Following the Course of Bladder Cancer

  • Baharlou, Rasoul;Vasmehjani, Abbas Ahmadi;Dehghani, Ali;Ghobadifar, Mohamed Amin;Khoubyari, Mahshid
    • IMMUNE NETWORK
    • /
    • 제14권3호
    • /
    • pp.156-163
    • /
    • 2014
  • Interleukin (IL) 17 is produced by T-helper (Th) 17 with a vigorous effect on cells of the immune system playing important roles in pathogenesis of immune-mediated diseases, including autoimmune disorders and cancers. Therefore, the aim of current study was to determine the serum levels of IL-6, IL-17, and transforming growth factor beta (TGF-${\beta}$) in Iranian bladder cancer patients, and to correlate them with disease status. Blood samples were collected from 40 bladder cancer patients and 38 healthy individuals with no history of malignancies or autoimmune disorders. The serum levels of IL-6, IL-17, and TGF-${\beta}$ were measured by the enzyme-linked immunosorbent assay (ELISA). The results showed that the levels of IL-17 (p<0.0001) and TGF-${\beta}$ (p<0.0001) were significantly lower in the patients compared to the controls. No significant differences in the level of serum IL-6 (p=0.16) was observed between the patients and controls. In addition, demographic characteristics between control and patients groups were not significantly different. As most of the cases studied in this investigation were in stage I and II, it is concluded that reduced Th17-related cytokines can be used as indicators for following the course and clinical stages of bladder carcinoma progress and immune response to cancer.

Effect of Cordycepin on the Expression of the Inflammatory Cytokines TNF-alpha, IL-6, and IL-17A in C57BL/6 Mice

  • Seo, Min Jeong;Kim, Min Jeong;Lee, Hye Hyeon;Park, Jeong Uck;Kang, Byoung Won;Kim, Gi-Young;Rhu, En Ju;Kim, Jung-In;Kim, Kwang Hyuk;Jeong, Yong Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.156-160
    • /
    • 2013
  • Culture supernatants of splenocytes from C57BL/6 mice were exposed to 0.3, 1.0, and 3.0 ${\mu}g/ml$ cordycepin plus 3.0 ${\mu}g/ml$ lipopolysaccharide (LPS) to investigate the effects of cordycepin (3'-deoxyadenosine) on the production of inflammatory cytokines. Coadministration of 3.0 ${\mu}g/ml$ cordycepin with LPS in cultured murine spleen cells significantly diminished expression of the inflammatory cytokines tumor necrosis factor-${\alpha}$ and interleukin-6 (IL-6) in a time-dependent manner. Expression of the inflammatory cytokine IL-17A was substantially downregulated in a timeand concentration-dependent manner at all cordycepin concentrations. These findings suggest that cordycepin downregulates the immediate hypersensitivity reaction stimulated by LPS.

Dead Lactobacillus plantarum Stimulates and Skews Immune Responses toward T helper 1 and 17 Polarizations in RAW 264.7 Cells and Mouse Splenocytes

  • Lee, Hyun Ah;Kim, Hyunung;Lee, Kwang-Won;Park, Kun-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.469-476
    • /
    • 2016
  • This study was undertaken to evaluate the immunomodulatory effect of dead nano-sized Lactobacillus plantarum (nLp) in RAW 264.7 cells and murine primary splenocytes. nLp is a dead, shrunken, processed form of L. plantarum nF1 isolated from kimchi (a traditional Korean fermented cabbage) and is less than 1 μm in size. It was found that nLp treatment stimulated nitric oxide (NO) production more in RAW 264.7 macrophages than pure live L. plantarum (pLp), and that the stimulatory properties were probably largely derived from its cell wall. In addition, nLp induced murine splenocyte proliferation more so than pLp; in particular, a high dose of nLp (1.0 × 1011 CFU/ml) stimulated proliferation as much as lipopolysaccharide at 2 μg/ml. Moreover, according to our cytokine profile results in splenocytes, nLp treatment promoted Th1 (TNF-α, IL-12 p70) responses rather than Th2 (IL-4, IL-5) responses and also increased Th17 (IL-6, IL-17A) responses. Thus, nLp stimulated NO release in RAW 264.7 cells and induced splenocyte proliferation more so than pLp and stimulated Th1 and Th17 cytokine production. These findings suggested that dead nLp has potential use as a functional food ingredient to improve the immune response, and especially as a means of inducing Th1/Th17 immune responses.

Improvement of Bronchial Immune Hypersensitivity Reaction by Extracts from Chrysanthemum morifolium and Scutellaria baicalensis

  • Kyoung won Cho;Sung Sun Park;Hak Joo Choi
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 춘계학술대회
    • /
    • pp.78-78
    • /
    • 2020
  • This study aimed to discover functional materials derived from resources, which can improve the troublesome symptoms of a bronchus by improving bronchial hyperresponsiveness as air pollution in Korea caused by fine dust and yellow dust is getting worse. Of natural resources grown naturally in Korea, Chrysanthemum morifolium(CM), and Scutellaria baicalensis(SB) have been used as a safe raw material for drinking or medicine for a long time, and it has been found that a combination of CS73 can improve bronchial health function in experimental animal models. Analysis of serum of animal models with asthma induced by ovalbumin (chicken egg albumin) and analysis of cytokine production in BALF (Bronchoalveolar lavage fluid) showed that inflammatory indices IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-17F, and IL-17E were significantly reduced and that respective production of IL-2 and IFN-γ was significantly increased in the group taking extracts from CS73 when compared with the control group. These results suggested that the combination of CS73 could be used as a natural treatment for asthma. In addition, in the animal models that the combination of CS73 significantly decreased the respective production of IgE, histamine and TSLP when compared with the control group. In experimental models, the ratio of Chrysanthemum morifolium to Scutellaria baicalensis of 7 : 3 had more excellent effect than other combined experimental groups, which suggests that the above combination can be developed as a natural treatment for asthma and is valuable as a pharmaceutical composition with an effect of improving bronchial health, capable of contributing to the public health threatened by fine dust.

  • PDF

Increase of Vδ2+ T Cells That Robustly Produce IL-17A in Advanced Abdominal Aortic Aneurysm Tissues

  • In-Ho Seo;Seung-Jun Lee;Tae Wook Noh;Jung-Hwan Kim;Hyun-Chel Joo;Eui-Cheol Shin;Su-Hyung Park;Young-Guk Ko
    • IMMUNE NETWORK
    • /
    • 제21권2호
    • /
    • pp.17.1-17.10
    • /
    • 2021
  • Abdominal aortic aneurysm (AAA) is a chronic dilation of the aorta with a tendency to enlarge and eventually rupture, which constitutes a major cause of cardiovascular mortality. Although T-cell infiltrates have been observed in AAA, the cellular, phenotypic, and functional characteristics of these tissue-infiltrating T cells are not fully understood. Here, we investigated the proportional changes of T-cell subsets-including CD4+ T cells, CD8+ T cells, and γδ T cells-and their effector functions in AAAs. We found that Vδ2+ T cells were presented at a higher frequency in aortic aneurysmal tissue compared to normal aortic tissue and PBMCs from patients with AAA. In contrast, no differences were observed in the frequencies of CD4+, CD8+, and Vδ1+ T cells. Moreover, we observed that the Vδ2+ T cells from AAA tissue displayed immunophenotypes indicative of CCR5+ non-exhausted effector memory cells, with a decreased proportion of CD16+ cells. Finally, we found that these Vδ2+ T cells were the main source of IL-17A in abdominal aortic aneurysmal tissue. In conclusion, our results suggest that increased Vδ2+ T cells that robustly produce IL-17A in aortic aneurysmal tissue may contribute to AAA pathogenesis and progression.

IL-17 and IL-17C Signaling Protects the Intestinal Epithelium against Diisopropyl Fluorophosphate Exposure in an Acute Model of Gulf War Veterans' Illnesses

  • Kristen M. Patterson;Tyler G. Vajdic;Gustavo J. Martinez;Axel G. Feller;Joseph M. Reynolds
    • IMMUNE NETWORK
    • /
    • 제21권5호
    • /
    • pp.35.1-35.16
    • /
    • 2021
  • Gulf War Veterans' Illnesses (GWI) encompasses a broad range of unexplained symptomology specific to Veterans of the Persian Gulf War. Gastrointestinal (GI) distress is prominent in veterans with GWI and often presents as irritable bowel syndrome (IBS). Neurotoxins, including organophosphorus pesticides and sarin gas, are believed to have contributed to the development of GWI, at least in a subset of Veterans. However, the effects of such agents have not been extensively studied for their potential impact to GI disorders and immunological stability. Here we utilized an established murine model of GWI to investigate deleterious effects of diisopropyl fluorophosphate (DFP) exposure on the mucosal epithelium in vivo and in vitro. In vivo, acute DFP exposure negatively impacts the mucosal epithelium by reducing tight junction proteins and antimicrobial peptides as well as altering intestinal microbiome composition. Furthermore, DFP treatment reduced the expression of IL-17 in the colonic epithelium. Conversely, both IL-17 and IL-17C treatment could combat the negative effects of DFP and other cholinesterase inhibitors in murine intestinal organoid cells. Our findings demonstrate that acute exposure to DFP can result in rapid deterioration of mechanisms protecting the GI tract from disease. These results are relevant to suspected GWI exposures and could help explain the propensity for GI disorders in GWI Veterans.

Osteopontin Potentiates Pulmonary Inflammation and Fibrosis by Modulating IL-17/IFN-γ-secreting T-cell Ratios in Bleomycin-treated Mice

  • Oh, Keunhee;Seo, Myung Won;Kim, Young Whan;Lee, Dong-Sup
    • IMMUNE NETWORK
    • /
    • 제15권3호
    • /
    • pp.142-149
    • /
    • 2015
  • Lung fibrosis is a life-threatening disease caused by overt or insidious inflammatory responses. However, the mechanism of tissue injury-induced inflammation and subsequent fibrogenesis remains unclear. Recently, we and other groups reported that Th17 responses play a role in amplification of the inflammatory phase in a murine model induced by bleomycin (BLM). Osteopontin (OPN) is a cytokine and extracellular-matrix-associated signaling molecule. However, whether tissue injury causes inflammation and consequent fibrosis through OPN should be determined. In this study, we observed that BLM-induced lung inflammation and subsequent fibrosis was ameliorated in OPNdeficient mice. OPN was expressed ubiquitously in the lung parenchymal and bone-marrow-derived components and OPN from both components contributed to pathogenesis following BLM intratracheal instillation. Th17 differentiation of $CD4^+$ ${\alpha}{\beta}$ T cells and IL-17-producing ${\gamma}{\delta}$ T cells was significantly reduced in OPN-deficient mice compared to WT mice. In addition, Th1 differentiation of $CD4^+$ ${\alpha}{\beta}$ T cells and the percentage of IFN-$\gamma$-producing ${\gamma}{\delta}$ T cells increased. T helper cell differentiation in vitro revealed that OPN was preferentially upregulated in $CD4^+$ T cells under Th17 differentiation conditions. OPN expressed in both parenchymal and bone marrow cell components and contributed to BLM-induced lung inflammation and fibrosis by affecting the ratio of pathogenic IL-17/protective IFN-$\gamma$ T cells.