• Title/Summary/Keyword: IGF2 gene

Search Result 118, Processing Time 0.034 seconds

Nutritional and Tissue Specificity of IGF-I and IGFBP-2 Gene Expression in Growing Chickens - A Review -

  • Kita, K.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.747-754
    • /
    • 2005
  • Nutritional regulation of gene expression associated with growth and feeding behavior in avian species can become an important technique to improve poultry production according to the supply of nutrients in the diet. Insulin-like growth factor-I (IGF-I) found in chickens has been characterized to be a 70 amino acid polypeptide and plays an important role in growth and metabolism. Although it is been well known that IGF-I is highly associated with embryonic development and post-hatching growth, changes in the distribution of IGF-I gene expression throughout early- to late-embryogenesis have not been studied so far. We revealed that the developmental pattern of IGF-I gene expression during embryogenesis differed among various tissues. No bands of IGF-I mRNA were detected in embryonic liver at 7 days of incubation, and thereafter the amount of hepatic IGF-I mRNA was increased from 14 to 20 days of incubation. In eyes, a peak in IGF-I mRNA levels occurred at mid-embryogenesis, but by contrast, IGF-I mRNA was barely detectable in the heart throughout all incubation periods. In the muscle, no significant difference in IGF-I gene expression was observed during different stages of embryogenesis. After hatching, hepatic IGF-I gene expression as well as plasma IGF-I concentration increases rapidly with age, reaches a peak before sexual maturity, and then declines. The IGF-I gene expression is very sensitive to changes in nutritional conditions. Food-restriction and fasting decreased hepatic IGF-I gene expression and refeeding restored IGF-I gene expression to the level of fed chickens. Dietary protein is also a very strong factor in changing hepatic IGF-I gene expression. Refeeding with dietary protein alone successfully restored hepatic IGF-I gene expression of fasted chickens to the level of fed controls. In most circumstances, IGF-I makes a complex with specific high-affinity IGF-binding proteins (IGFBPs). So far, four different IGFBPs have been identified in avian species and the major IGFBP in chicken plasma has been reported to be IGFBP-2. We studied the relationship between nutritional status and IGFBP-2 gene expression in various tissues of young chickens. In the liver of fed chickens, almost no IGFBP-2 mRNA was detected. However, fasting markedly increased hepatic IGFBP-2 gene expression, and the level was reduced after refeeding. In the gizzard of well-fed young chickens, IGFBP-2 gene expression was detected and fasting significantly elevated gizzard IGFBP-2 mRNA levels to about double that of fed controls. After refeeding, gizzard IGFBP-2 gene expression decreased similar to hepatic IGFBP-2 gene expression. In the brain, IGFBP-2 mRNA was observed in fed chickens and had significantly decreased by fasting. In the kidney, IGFBP-2 gene expression was observed but not influenced by fasting and refeeding. Recently, we have demonstrated in vivo that gizzard and hepatic IGFBP-2 gene expression in fasted chickens was rapidly reduced by intravenous administration of insulin, as indicated that in young chickens the reduction in gizzard and hepatic IGFBP-2 gene expression in vivo stimulated by malnutrition may be, in part, regulated by means of the increase in plasma insulin concentration via an insulin-response element. The influence of dietary protein source (isolated soybean protein vs. casein) and the supplementation of essential amino acids on gizzard IGFBP-2 gene expression was examined. In both soybean protein and casein diet groups, the deficiency of essential amino acids stimulated chickens to increase gizzard IGFBP-2 gene expression. Although amino acid supplementation of a soybean protein diet significantly decreased gizzard IGFBP-2 mRNA levels, a similar reduction was not observed in chickens fed a casein diet supplemented with amino acids. This overview of nutritional regulation of IGF-I and IGFBP-2 gene expression in young chickens would serve for the establishment of the supply of nutrients to diets to improve poultry production.

Linkage Disequilibrium and Gene Expression Analyses of IGF2 Gene in Korean Native Pigs (재래돼지를 이용한 IGF2 유전자의 연관불균형과 유전자발현양상에 대한 분석)

  • Li, Song-Lan;Li, Xiaoping;Choi, Bong-Hwan;Lee, Cheol-Koo;Cho, Byung-Wook;Kim, Jong-Joo;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • Insulin-like growth factor 2 (IGF2) is the first identified imprinted gene, which is paternally expressed in multiple mammalian species. A paternally expressed QTL for muscle growth and backfat thickness (BFT) has previously been identified near the IGF2 locus on the distal tip of pig chromosome 2 (SSC2p). Therefore the IGF2 gene is considered an economically important candidate gene for pig industry. Herein, this study explored genetic variation of IGF2 for in3-G3072A, in7-G162C and a new SNP in intron7 (C1589T) in Korean native pig (KNP) and commercial pig breeds, and detected their linkage disequilibrium within these breeds. Furthermore we investigated the effect of in3-G3072A on IGF2 gene expression in post-natal muscle and backfat tissues. The real-time quantitative PCR results showed that animals inherited allele G from a KNP sire had significant higher IGF2 gene expression in backfat tissue than those inherited allele A from a Yorkshire sire, however opposite situation in muscle. These results demonstrated the allele 3072G is associated with a higher IGF2 gene expression in fat tissues, but low gene expression in muscle tissues when compared with the 3072A allele. These results suggest that KNP with lower muscle mass and higher fat deposition might be associated with a higher frequency of the 3072G allele, and selecting KNP based on IGF2 genotypes could result in an economic benefit to KNP producers.

Correlation between chromosome abnormalities and genomic imprinting in developing human - 1) Frequent biallelic expression of insulin-like growth factor II (IGF2) in gynogenetic Ovarian Teratomas: Uncoupling of H19 and IGF2 imprinting

  • Choi, Bo-Hwa;Lee, In-Hwan;Chun, Hyo-Jin;Kang, Shin-Sung;Chang, Sung-Ik
    • Journal of Genetic Medicine
    • /
    • v.2 no.1
    • /
    • pp.41-47
    • /
    • 1998
  • Human uniparental gestations such as gynogenetic ovarian teratomas provide a model to evaluate the integrity of parent-specific gene expression - i.e. imprinting - in the absence of a complementary parental genetic contribution. The few imprinted genes characterized so far include the insulin-like growth factor-2 gene (IGF2) coding for a fetal growth factor and H19 gene whose normal function is unknown but it is likely to act as an mRNA. IGF2 is expressed by the paternal allele and H19 by the maternal allele. This reciprocal expression is quite interesting because both H19 and IGF2 genes are located close to each other on chromosome 11p15.5. In situ RNA hybridization analysis has shown variable expression of the H19 and IGF2 alleles according to the tissue origin in 11 teratomas. Especially, Skin, derivative of ectoderm, is expressed conspicuously. We examined imprinting of H19 and IGF2 in teratomas using PCR and RT-PCR of exonic polymorphism. H19 and IGF2 transcript could be expressed either biallelically or monoallelically in the teratomas. Biallelic expression (i.e., loss of imprinting) of IGF2 occurred in 5 out of 6 mature teratomas and 1 out of 1 immature teratoma. Biallelic expression of H19 occurred in 4 out of 10 mature teratomas and 1 out of 1 immature teratoma. Expression levels of H19 and IGF2 transcript using the semi-quantitative RT-PCR had no relation between monoallelic and biallelic expression. Moreover, IGF2 biallelic expression did not affect allele-specificity or levels of H19 expression. These results demonstrate that both genes, H19 and IGF2, can be imprinted, expressed and regulated independently and individually of each other in ovarian teratoma.

  • PDF

The Effect of $17{\beta}-Estradiol$ on the Gene Expression of IGF-I and Bone Matrix Protein in the Osteoblast-Like Cell (골아세포의 IGF-I 유전자 발현 및 골기질 단백질에 대한 $17{\beta}-estradiol$의 영향)

  • Yang, Won-Suk;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.375-390
    • /
    • 2000
  • The purpose of this study is to evaluate the expression ofIGF-I, considered as the mediator of action of estrogen, and IGF-IA and IGF-IB, alternative slicing form of IGF-I, using $17{\beta}-estradiol$ in MC3T3-E1 cells. We observed the effect on type I collagen and osteopontin gene expression and DNA synthetic activity of MC3T3-E1 cells, added by estrogen, IGF-I and combination and the interactionon proliferation and differentiation of MC3T3-E1 cells. The results were as follows :RT-PCR experiment for observing timedependantIGF-I gene expression patternshowed IGF-IA and IB gene expression in both of control and test group. In these IGF-IA gene expression was appeared predominantly. In control, IGF-I geneexpression level was maintained until 24hr and then decreased gradually. In testgroup, IGF-I gene expression level increased as time goes by. Experiment measuring DNA synthetic activity, as it is added by $17{\beta}-estradiol$, IGF-I and combination, showed that first day , there was the tendency of more increase of synthetic activity in all test group than control but no statical significance(P>0.05), and third day, there was more increase of DNA synthetic activity in $17{\beta}-estradiol$ group and combination group and it was statically significant. (P<0.005) Experiment for observing type I collagen gene expression pattern showed more increase of expression in $17{\beta}-estradiol$ group than control and no significant difference in IGF-I group and combination group. Experiment for observing osteopontin gene expression pattern showed no significant difference in control and test group. In conclusion, $17{\beta}-estradiol$ in MC3T3- E1 cells increased IGF-I gene and DNA synthetic activity simultaneously, therefore it appeared that IGF-I is related to the action of estrogen. Combination treatment of IGF-I and $17{\beta}-estradiol$ has effect on cell proliferation but this effect is lower than IGF-I or $17{\beta}-estradiol$ alone. However, combination treatment has not great effect on type I collagen or osteopontin gene expression thus little effect of cell differentiation.

  • PDF

Influence of Refeeding of Protein, Carbohydrate and Fat on Hepatic Insulin-Like Growth Factor-I mRNA Level in Fasted Chicks

  • Kita, K.;Hangsanet, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.245-248
    • /
    • 1998
  • The influence of refeeding either protein, carbohydrate or fat on hepatic insulin-like growth factor-I (IGF-I) mRNA level in chicks which had been fasted for 2 days was examined. The hepatic IGF-I mRNA was measured by ribonuclease protection assay. Fasting reduced hepatic IGF-I mRNA levels to less than half of those in the fed control. When chicks were refed either a control, protein or carbohydrate diet, IGF-I mRNA levels significantly increased to those in the fed control until 2 hours of refeeding. Refeeding of fat did not alter hepatic IGF-I mRNA levels. The significant correlation between liver weight and hepatic IGF-I gene expression suggests that when chicks are refed after 2-d fasting, the acute increase in hepatic IGF-I gene expression brought about after refeeding may be partly regulated by the increase in liver protein metabolism.

Knock-in Vector for Expression of Insulin-like Growth Factor 1 on the Bovine β-casein Gene Locus (소 β-casein 유전자 영역에서 소 Insulin-like Growth Factor 1을 생산하기 위한 Knock-in Vector)

  • Kim, Sang Young;Park, Da Som;Kim, Se Eun;Koo, Deog-Bon;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.41 no.3
    • /
    • pp.51-55
    • /
    • 2017
  • The production of therapeutic protein from transgenic domestic animal is the major technology of biotechnology. Insulin-like growth factor-1 (IGF-1) is known to play an important role in the growth of the animal. The objective of this study is construction of knock-in vector that bovine IGF-1 gene is inserted into the exon 7 locus of ${\beta}$-casein gene and expressed using the gene regulatory DNA sequence of bovine ${\beta}$-casein gene. The knock-in vector consists of 5' arm region (1.02 kb), bIGF-1 cDNA, CMV-EGFP, and 3' arm region (1.81 kb). To express bIGF-1 gene as transgene, the F2A sequence was fused to the 5' terminal of bIGF-1 gene and inserted into exon 7 of the ${\beta}$-casein gene. As a result, the knock-in vector is confirmed that the amino acids are synthesized without termination from the ${\beta}$-casein exon 7 region to the bIGF-1 gene by DNA sequence. These knock-in vectors may help to create transgenic dairy cattle expressing bovine bIGF-1 protein in the mammary gland via the expression system of the bovine ${\beta}$-casein gene.

The variation of insulin like growth factor 2 maker is associated with growth traits in Thai native (Kradon) pigs

  • Kessara Ampaporn;Rattikan Suwannasing;Pitchayanipa Phongphanich;Supanon Tunim;Monchai Duangjinda
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1350-1356
    • /
    • 2023
  • Objective: This study was conducted to investigate polymorphisms of the melanocortin-4 receptor (MC4R) and insulin like growth factor 2 (IGF2) genes and to evaluate the growth traits affected by such polymorphisms in Thai native (Kradon) pigs. Methods: Blood samples and productive data from 91 Kradon pigs were collected. DNA was extracted and quantified, the IGF2 and MC4R genes were amplified, and the polymerase chain reaction (PCR) produces were digested using the PCR-restriction fragment length polymorphism (PCR-RFLP) technique. Genotyping was performed, and the association between genotypes and growth traits on the birth and weaning weights were evaluated. Results: The IGF2 intron7 g.162G>C variations in Kradon pigs were found in three genotypes: i) GG, ii) GC, and iii) CC. The GG genotype frequency was the highest followed by the GC and CC genotypes. The frequencies of the G and C alleles were 0.703 and 0.297, respectively. The MC4R genotype was found in only one genotype (GG). The IGF2 gene pattern was not associated with birth weight traits, whereas the IGF2 gene pattern was related to the weaning weight trait in Kradon pigs. Pigs with the CC and GC genotypes had higher weaning weights than ones with the GG genotype (p<0.001). Conclusion: Thai native Kradon pigs with the CC and GC genotypes of the IGF2 gene have higher weaning weights than pigs with the GG genotype.

Allelic Characterization of IGF2 and H19 Gene Polymorphisms in Molar Tissues

  • Piyamongkol, Wirawit;Suprasert, Prapaporn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4405-4408
    • /
    • 2016
  • Background: To investigate the characteristics of allelic distribution of IGF2 and H19 gene polymorphisms in molar tissues compared to normal placentas. Materials and Methods: Forty-nine specimens of molar tissues as well as 100 control normal placental tissues, delivered on the same days, were collected. Polymerase chain reaction (PCR) with restriction fragment length polymorphism (RFLP) on 2% agarose gel electrophoresis was conducted to determine the allelic distribution. The ApaI polymorphism within exon 9 of IGF2 and the RsaI polymorphism within exon 5 of H19 were employed to identify the allelic distribution of the IGF2 and H19 genes, respectively. Then the data for these genes in the molar and normal placenta tissues were compared. Results: The allelic distribution of IGF2 genes found in molar tissue were 21 (42.9%) aa (undigested), 10 (20.4%) ab (heterozygous) and 18 (36.7%) bb (digested), while in normal placenta tissue the values were 22 (22%) aa, 51 (51%) ab, and 27 (27%) bb. The allelic distribution of H19 in molar tissues was 8 (16.2%) aa (undigested), 8 (16.3%) ab (heterozygous) and 33 (67.4%) bb (digested) and in normal placental tissue was 16 (16%) aa, 36 (36%) ab and 48 (48%) bb in normal placenta tissue. These results were significantly different with P values of 0.001 and 0.037 for the allelic distribution of IGF2 and H19, respectively. Conclusions: Molar tissues showed significant differences of allelic distribution of IGF2 and H19 from normal placenta tissues.

The Effect of Estrogen on the Transcription of the Insulin-like Growth Factor-I Gene in the Uterus (자궁 내 insulin-like growth factor-I 유전자 발현에 미치는 에스트로겐의 영향)

  • Kwak, In-Seok
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.593-597
    • /
    • 2009
  • The uterus plays a critical role in pregnancy and steroid hormones, and both estrogen (E2) and progesterone (P4) especially play important roles in the cross-talk between embryos and uterus to support the pregnancy. E2 stimulates uterine growth during early pregnancy to prepare for implantation of embryos. This cross-talk during the implantation period involves hormones (E2 and P4) and growth factors, including insulin-like growth factor-I (IGF-I). In the uterus of a pregnant pig, the action of E2 is mediated by estrogen receptor-${\beta}$ (ER-${\beta}$). The expression of ER-a was much higher in early pregnancy than in mid- and late- pregnancy, suggesting E2 secretion from embryos enhances transcription of ER-a during early pregnancy. In order to prove whether IGF-I is an E2 target gene, quantitative real-time PCR was performed on ovariectomized murine uterus with E2 and/or P4 treatment(s). Increased IGF-I mRNA expression was observed with E2 treatment, however, it was not significantly induced by P4 treatment, which clearly demonstrates that, in mice, E2 depends on the activation of uterine IGF-I gene expression. The expression of IGF-I in the uterus of pigs was much higher in early pregnancy than in mid- and late- pregnancy and these data exhibited the same expression pattern with the ER-${\beta}$ gene expression in the uterus. It suggests that a positive co-relationship between IGF-I and ER-${\beta}$ expression exists in the uterus, and that both gene expressions of IGF-I and ER-${\beta}$ are regulated by E2. It further suggests that uterine the IGF-I gene expression might be initiated by E2 secreted from embryos to increase ER-${\beta}$ gene expression, and that this increased ER-${\beta}$ further stimulates the expression of IGF-I in the uterus during early pregnancy.

Growth Regulation in IGF-1 Receptor Transgenic Mice

  • Kim Hyun-Joo;Shin Young-Min;Chang Suk-Min;Park Chang-Sik;Jin Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.93-97
    • /
    • 2006
  • To study the signaling effect of insulin-like growth factor-I(IGF-1), transgenic mice containing IGF-1 Receptor (IGF-1R) cDNA fused to metallothionein promoter were produced by DNA microinjection into the pronucleus of mouse zygote. Three founders were produced with transgenic mice containing IGF-1R gene. Transgenic mice lines contained approximately $4{\sim}20$ copies of transgenes per cell and transmission of this gene into the progeny with Mendelian manner were determined. The founder mice were mated with normal mice to produce $F_1$ mice and then $F_2$ mice. Transmission rates of IGF-1R transgene in the progeny mice were $25{\sim}60%$ in $F_1$ generation and $40{\sim}50%$ in $F_2$ generation. The mRNA expression of IGF-1R transgene in liver was analyzed using RT-PCR for IGF-1R gene in liver. When body weights of transgenic pups were measured during 4, 10 and 14 weeks after birth, IGF-1R transgenic mice grew faster than non transgenic littermates. This study indicated that growth regulation by IGF-1 signaling through IGF-1R can be elucidated using IGF-1R transgenic mice.