• Title/Summary/Keyword: IGF-I level

Search Result 108, Processing Time 0.031 seconds

Associations between Feed Efficiency, Body Growth and Serum Insulin-like Growth Factor-I Level for Korean Native Ogol Chickens

  • Kim, W.K.;Kim, M.H.;Seo, D.S.;Lee, C.Y.;Suk, Y.O.;Ko, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.532-537
    • /
    • 2005
  • Increasing of body weight has been one of the important economic factors in the poultry industry. Insulin-like growth factor (IGF)-I is a polypeptide that serves to regulate muscle development and body growth. Moreover, IGF-I is related to feed efficiency. However, there are few studies regarding the regulatory roles of chicken IGF-I/-II compared with that of mammals. Especially, the Korean Native Ogol Chicken (KNOC) has a lean body growth and its body weight is generally lighter than the broiler chicken. Therefore, this study was conducted to investigate associations among serum IGF-I/-II concentration, feed efficiency, and body growth in KNOC. The body weight and feed intake of KNOC were recorded from 20 to 36 weeks at 2 weeks intervals, and blood was taken every 2 weeks. Serum IGF-I/-II were measured by RIA. Chickens were divided into two groups, high and low serum IGF-I concentration. Generally, feed efficiency and growth performance (body weight and weight gain) in the high serum IGF-I group were higher than those of the low group during the experimental period. In particular, the body weight of the IGF-I high group were significantly different from those of the IGF-I low group at 34 and 36 weeks, respectively (p<0.05). Moreover, body weight, weight gain, and feed efficiency had a significant correlation with serum IGF-I at several weeks (p<0.05 and p<0.01). These results show that IGF-I plays an important role in body growth and suggests a possibility that serum IGF-I could be used as a selection marker for body growth in KNOC.

THE EFFECTS OF INSULIN-LIKE GROWTH FACTOR I (IGF-I) ON EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF) MRNA IN MG-63 OSTEOBLASTLIKE CELLS (MG-63 세포주에서 Vascular Endothelial Growth Factor (VEGF) mRNA 발현에 대한 Insulin-like Growth Factor I (IGF-I)의 효과에 대한 연구)

  • Suh, Je-Duck;Myung, Hoon;Kang, Nara;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.5
    • /
    • pp.363-369
    • /
    • 2005
  • Purpose: To determine the role of Insulin-like Growth Factor-I (IGF-I) in the regulation of Vascular Endothelial Growth Factor (VEGF) expression in MG-63 cells and then to find the mechanism b which this regulation occurs. Materials and methods: MG-63 cells were grown to confluence in 60-mm dishes. To determine the effects of IGF-I on expression of VEGF mRNA according to time and concentration, the cells were treated with 10 nM IGF-I, following isolation of total RNA and Northern blot analysis after 1, 2, 4, 8, 12, 24 hours and after 2 hours of treatment with 0.5, 2, 10, 25, 50 nM IGF-I respectively, isolation of total RNA and Northern blot analysis were followed. To determine the mechanism of action of IGF-I, inhibitors such as hydroxyurea $(76.1\;{\mu}g/ml)$, actinomycin D $(2.5\;{\mu}g/ml)$, cycloheximide $(10\;{\mu}g/ml)$ were added 1 hour after treatment of 10 nM IGF-I. Results: 1. the expression of VEGF mRNA was increased with treatment of IGF-I. 2. The expression of VEGF mRNA was increased according to time-and concentration dependent manner of IGF-I. 3. The effect of IGF-I was decreased by hydroxyuera, actinomycin D, but not by cycloheximide. Conclusion: IGF-I regulate the expression of VEGF mRNA in the level of DNA synthesis and transcription. These results could suggest that IGF-I plays an important role in angiogenesis in the process of new bone formation and remodeling.

Effects of Intra-duodenal Infusion of Limiting Amino Acids on Plasma Insulin-like Growth Factor I, Growth Hormone, Insulin and Liver Insulin-like Growth Factor I mRNA in Growing Goat Fed a Maize Stover-based Diet

  • Sun, Z.H.;Tan, Z.L.;Yao, J.H.;Tang, Z.R.;Shan, J.G.;Hu, J.P.;Tang, S.X.;Jiang, Y.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.733-741
    • /
    • 2007
  • The effects of intra-duodenal infusion of methionine (Met), lysine (Lys) and leucine (Leu) on dry matter intake (DMI), the concentrations of insulin-like growth factor I (IGF-I), growth hormone (GH) and insulin in plasma, and liver IGF-I mRNA level were investigated in two experiments for Liuyang Black growing wether goats. In Experiment 1, three goats ($10.0{\pm}0.1$ kg) were fitted with ruminal, proximal duodenal and terminal ileal fistulaes to determine the infusion amounts of Met, Lys and Leu at the duodenum according to essential amino acid flows into the duodenum and their apparent digestibility. The infusion amounts were 0.77 g/d, 0.91 g/d and 0.58 g/d respectively. In Experiment 2, 4 groups of goats (($10.0{\pm}0.2$ kg) for each group, were cannulated at the duodenum, and were infused with a mixture of Met, Lys and Leu (Control), or mixtures with 21% Met, Lys or Leu replaced with glutamate respectively on a nitrogenous basis. The replacement of 21% Met, Lys or Leu with glutamate did not affect intakes of maize stover, concentrate or both (p>0.05) when compared with the control. The replacement of 21% Met or Lys significantly (p<0.05) reduced plasma GH, insulin and IGF-I concentrations and liver IGF-I mRNA level. The replacement of 21% Leu with glutamate reduced (p<0.05) plasma IGF-I concentration only, but not plasma insulin and GH, as well as liver IGF-I mRNA level (p>0.05). The close relationships between supplying Met and Lys in the lumen of the duodenum and plasma IGF-I, GH and insulin concentrations, as well as liver IGF-I mRNA level in this study indicate that the effects of the limiting amino acids on nutrition of animals are likely intermediated via their effects on these hormones, and these hormone profiles could be used as intermediate markers for the limiting order of amino acids.

The Effect of Insulin-Like Growth Factor-I(IGF-I) and IGF Binding Protein-3(IGFBP-3) on Cellular Proliferation in Mouse 3T3 Fibroblast Cells (마우스 섬유아세포(3T3 fibroblast cells)에서 Insulin-like Growth Factor-I(IGF-I) 및 IGF Binding Protein-3 (IGFBP-3)이 세포증식에 미치는 영향)

  • Cho, Chul-Ho;Kwak, Seung-Min;Moon, Tae-Hun;Cho, Jae-Hwa;Ryu, Jeong-Seon;Lee, Hyong-Lyeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.5
    • /
    • pp.618-628
    • /
    • 1999
  • Background: Cell growth is a balance between cell proliferation and cell death. Insulin-like growth factor-I(IGF-I), which binds IGF-I receptor(IGF-IR), mediates cellular proliferation as a potent mitogen. IGF binding protein-3(IGFBP-3) as a circulating major IGFBP can inhibit or enhance the effects of IGF-I on cellular growth by binding IGFs. Methods: We investigated the expressions of mRNA of IGF-I and IGF-IR by northern blot and phosphorylation of IGF-IR with the treatment of IGF-I by western blot in 3T3 fibroblast cells. The cellular proliferations of 3T3 cells with the treatments of IGF-I were evaluated using $^3H$-thymidine incorporation and MTT assay. Also to observe the effect of IGFBP-3 on cellular proliferation, 3T3 cells were treated with anti-IGFBP-3 and ${\alpha}IR_3$(monoclonal antibody to IGF-IR) alone or in combination. Results: Our results demonstrated that 3T3 cells showed mRNA expressions of IGF-I and IGF-IR and the IGF-I increased phosphorylation of IGF-IR. The treatments of 3T3 cells with IGF-I increased cellular proliferation in 5 % and 1 % seruma-containing media, not in serum-free media. The addition of anti-IGFBP-3 to neutralize IGFBP-3 showed 2-fold increase of cellular proliferation, and also co-incubation of anti-IGFBP-3 and ${\alpha}IR_3$ together showed similar increase of cellular proliferation in 3T3 cells. Interestingly, when the cells were pretreated with ${\alpha}IR_3$ for 4 hr, prior to the simultaneous addition of ${\alpha}IR_3$ and anti-IGFBP-3, anti-IGFBP-3-mediated cellular proliferation was decreased to control level. All of these results suggest that free IGF-I released from IGF-I/IGFBP-3 complex would be involved in the cellular proliferation. Conclusion: IGF-I is a mitogen through the activation of IGF-IR in 3T3 cells, and IGFBP-3 could be a potent inhibitor for IGF-I action by binding IGF-I.

  • PDF

Effect of Bovine Colostral Whey Fraction containing Insulin-like Growth Factor on Cell Proliferation (젖소 초유 중의 Insulin-like Growth Factor-1 함유 분획이 세포 성장에 미치는 영향)

  • 황경아;양희진;하월규;이수원
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.171-175
    • /
    • 2004
  • Insulin-like growth factor-I (IGF-I) rich fraction, which was obtained molecules ranged between 30 kDa and 1 kDa, was fractionated by ultrafiltration from bovine colostral whey with 30 kDa and 1 kDa membrane. IGF-I included in fractionated IGF-I rich fraction was confirmed by SDS-PAGE and western blotting and then the quantity of IGF-I was measured by ELISA. IGF-I concentration in IGF-I rich fraction was 10ng/mg protein. Effect of IGF-I rich fraction on in vitro proliferation of several cells was tested. IEC-6 cell proliferation rate was increased 60%. 53%, 30%, and 20% at l0ng, 1ng, 0.1ng and IGF-I of IGF-I, respectively, compared to control group which was not supplemented by IGF-I rich fraction. IGF-I rich fraction stimulated in vitro proliferation of IEC-6 cell in a dose dependent manner by increasing cell number. Detroit 551 cell proliferation was enhanced 56% and 26% at 10ng and 1ng level of IGF-I, respectively, compared to control group. EL-4 cell and L6 cell proliferation was increased 53% and 46% at 10ng of IGF-I, respectively, compared to control group.

Nutritional and Tissue Specificity of IGF-I and IGFBP-2 Gene Expression in Growing Chickens - A Review -

  • Kita, K.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.747-754
    • /
    • 2005
  • Nutritional regulation of gene expression associated with growth and feeding behavior in avian species can become an important technique to improve poultry production according to the supply of nutrients in the diet. Insulin-like growth factor-I (IGF-I) found in chickens has been characterized to be a 70 amino acid polypeptide and plays an important role in growth and metabolism. Although it is been well known that IGF-I is highly associated with embryonic development and post-hatching growth, changes in the distribution of IGF-I gene expression throughout early- to late-embryogenesis have not been studied so far. We revealed that the developmental pattern of IGF-I gene expression during embryogenesis differed among various tissues. No bands of IGF-I mRNA were detected in embryonic liver at 7 days of incubation, and thereafter the amount of hepatic IGF-I mRNA was increased from 14 to 20 days of incubation. In eyes, a peak in IGF-I mRNA levels occurred at mid-embryogenesis, but by contrast, IGF-I mRNA was barely detectable in the heart throughout all incubation periods. In the muscle, no significant difference in IGF-I gene expression was observed during different stages of embryogenesis. After hatching, hepatic IGF-I gene expression as well as plasma IGF-I concentration increases rapidly with age, reaches a peak before sexual maturity, and then declines. The IGF-I gene expression is very sensitive to changes in nutritional conditions. Food-restriction and fasting decreased hepatic IGF-I gene expression and refeeding restored IGF-I gene expression to the level of fed chickens. Dietary protein is also a very strong factor in changing hepatic IGF-I gene expression. Refeeding with dietary protein alone successfully restored hepatic IGF-I gene expression of fasted chickens to the level of fed controls. In most circumstances, IGF-I makes a complex with specific high-affinity IGF-binding proteins (IGFBPs). So far, four different IGFBPs have been identified in avian species and the major IGFBP in chicken plasma has been reported to be IGFBP-2. We studied the relationship between nutritional status and IGFBP-2 gene expression in various tissues of young chickens. In the liver of fed chickens, almost no IGFBP-2 mRNA was detected. However, fasting markedly increased hepatic IGFBP-2 gene expression, and the level was reduced after refeeding. In the gizzard of well-fed young chickens, IGFBP-2 gene expression was detected and fasting significantly elevated gizzard IGFBP-2 mRNA levels to about double that of fed controls. After refeeding, gizzard IGFBP-2 gene expression decreased similar to hepatic IGFBP-2 gene expression. In the brain, IGFBP-2 mRNA was observed in fed chickens and had significantly decreased by fasting. In the kidney, IGFBP-2 gene expression was observed but not influenced by fasting and refeeding. Recently, we have demonstrated in vivo that gizzard and hepatic IGFBP-2 gene expression in fasted chickens was rapidly reduced by intravenous administration of insulin, as indicated that in young chickens the reduction in gizzard and hepatic IGFBP-2 gene expression in vivo stimulated by malnutrition may be, in part, regulated by means of the increase in plasma insulin concentration via an insulin-response element. The influence of dietary protein source (isolated soybean protein vs. casein) and the supplementation of essential amino acids on gizzard IGFBP-2 gene expression was examined. In both soybean protein and casein diet groups, the deficiency of essential amino acids stimulated chickens to increase gizzard IGFBP-2 gene expression. Although amino acid supplementation of a soybean protein diet significantly decreased gizzard IGFBP-2 mRNA levels, a similar reduction was not observed in chickens fed a casein diet supplemented with amino acids. This overview of nutritional regulation of IGF-I and IGFBP-2 gene expression in young chickens would serve for the establishment of the supply of nutrients to diets to improve poultry production.

The Plasma Level of Insulin-like Growth Factor-I (IGF-I) in Relation to Mammary Circulation and Milk Yield in Two Different Types of Crossbred Holstein Cattle

  • Chaiyabutr, N.;Komolvanich, S.;Thammacharoen, S.;Chanpongsang, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.3
    • /
    • pp.343-348
    • /
    • 2004
  • The objective of the present study was to determine the plasma level of insulin-like growth factor-I (IGF-I) in relation to mammary blood flow and milk yield including biological variables of relevance to milk synthesis in two different types of crossbred Holstein cattle at 3 different stages of lactation. Eight heifers were 87.5% HF and eight 50% HF animals were selected for the experiments. The three stages of lactation tested were: early lactation (30 days postpartum), mid-lactation (120 days postpartum) and late lactation (210 days postpartum). Animals in each group were fed a concentrate and rice straw treated with 5% urea as the source of roughage throughout the experiments. In early lactation, mammary blood flow and milk yield of 87.5% HF animals were significantly higher than those of 50% HF animals. In mid- and late lactation, both mammary blood flow and milk yield showed a proportional decrease from the early lactating period of 87.5% HF animals. The trends for persistency were observed in 50% HF animals as for udder blood flow and milk yield throughout the experimental periods. The plasma glucose level of the 50% HF animals was significantly higher than those of 87.5% HF animals in both early and mid-lactation. The concentrations of arterial plasma free fatty acids ($C_{16}\;to\;C_{18}$) were higher in 50% HF animals as compared with 87.5% HF animals in all periods of study. In early lactation, the concentration of plasma growth hormone (GH) of 87.5% HF animals was higher than those of the 50% HF animals, thereafter the mean level of plasma growth hormone declined in both mid- and late lactation. The concentration of plasma IGF-I of 50% HF animals was significantly higher than those of 87.5% HF animals in all stages of lactation. There were no differences among stages of lactation for the levels of plasma IGF-I, insulin and growth hormone in 50% HF animals. In 87.5% HF animals, the plasma levels of both IGF-I and insulin were lower in early lactating period while it showed an increase during mid- and late lactation. The present results indicated that the regulatory role for the higher mammary blood flow and milk yield during lactation in 87.5% HF are not mediated via the higher level of circulating IGF-I. Differences in mammary blood flow and milk yield between 50% HF and 87.5% HF animals are in part due to a higher concentration of circulating growth hormone. The lower level of circulating growth hormone in 50% HF animals would be regulated by higher levels of IGF-I, free fatty acid and glucose in plasma.

Serum Levels of Insulin-Like Growth Factor-I in Flounder, Parlichthys olivaceus (넙치 (Parlichthys olivaceus) 혈액중 Insulin-like growth factor-I의 함유수준)

  • NAM Taek-Jeong;PARK Kie-Young;LEE Young-Don;KIM Yong-Uk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.150-156
    • /
    • 1996
  • Insulin-like growth factor-1 (IGF-I) is a mitogenic peptide with molecular mass of 7kDa. It is produced mainly in the liver and has important functions in the regulation of development and somatic growth. Recently, several investigations were undertaken to examine the biological actions and structures of IGF-I in fish. In this study, the serum levels of IGF-I were estimated from flounder, Parlichthys oilvaceus, before, during and after fasting, and the levels were accounted for 47 ng/ml, 40 ng/ml and 45 ng/ml, respectively. These results suggest that food deprivation primarily reduces IGF-I level in the blood.

  • PDF

Effects of Volatile Fatty Acids on IGF-I, IGFBP-3, GH, Insulin and Glucagon in Plasma, and IGF-I and IGFBP-3 in Different Tissues of Growing Sheep Nourished by Total Intragastric Infusions

  • Zhao, Guang-Yong;Sun, Ya-Bo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.366-371
    • /
    • 2010
  • Twelve Suffolk${\times}$Small-tail-Han male sheep (body weight 21-26 kg), aged four months, were used to study the effects of volatile fatty acids (VFA) on IGF-I (insulin-like growth factor-I), IGFBP-3 (insulin-like growth factor binding protein-3), GH (growth hormone), insulin and glucagon in plasma, and IGF-I and IGFBP-3 in different tissues. The sheep were randomly divided into four groups with 3 sheep in each group. The sheep were sustained by total intragastric infusions and four levels of mixed VFA (the molar proportion of acetic acid, propionic acid and butyric acid was 65:25:10), which supplied 333, 378, 423 and 468 KJ energy/kg $W^{0.75}$/d, were infused into the rumen as experimental Treatments I, II, III and IV, respectively. The experiment lasted 12 days, of which the first 8 days were for pretreatment and the last 4 days for collection of samples. At the end of the experiment, blood samples were taken and then the sheep were slaughtered and tissue samples from the rumen ventral sac, rumen dorsal sac, liver, duodenum and Longissimus dorsi muscle were obtained. IGF-I, IGFBP-3, GH, insulin and glucagon in plasma and IGF-I and IGFBP-3 in different tissues were analysed. Results showed that the concentration of IGF-I, IGFBP-3, GH, insulin or glucagon in plasma and the content of IGF-I and IGFBP-3 in the rumen dorsal sac, rumen ventral sac, liver or Longissimus dorsi muscle were increased with VFA infusion level (p<0.05). No significant differences were found in duodenum IGF-I between Treatments I and II and in rumen dorsal sac IGFBP-3 between Treatments II and III (p>0.05). It was concluded that IGF-I, IGFBP-3, GH, insulin and glucagon in plasma and IGF-I and IGFBP-3 in rumen dorsal sac, rumen ventral sac, liver and Longissimus dorsi muscle were increased significantly with increasing level of ruminal infusion of mixed VFA.

Effects of Insulin-Like Growth Factor-I on Expression of Suppressor of Cytokine Signaling-3 in C2C12 Myotube (C2C12 myotube에서 insulin-like growth factor-I이 SOCS-3 유전자 발현에 미치는 영향)

  • Kim, Hye-Jin;Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1385-1392
    • /
    • 2011
  • It is well known that both insulin-like growth factor-I and suppressor of cytokine signaling-3 (SOCS-3) are known to modulate various aspects of physiology in skeletal muscle cells. Furthermore, although SOCS-3 expression is related to insulin resistance in non-skeletal muscle cells and is known to interact with insulin-like growth factor-I receptor, the effect of IGF-I on SOCS-3 gene expression in skeletal muscle cells is presently unknown. C2C12 myotubes were treated with different concentrations (0-200 ng/ml) of IGF-I or for various periods of time (3-72 hr). Immunofluorescent staining image revealed that IGF-I induced SOCS-3 protein expression in a dose-dependent manner. Western blot data also showed that SOCS-3 proteins were induced by IGF-I (200 ng/ml) in C2C12 myotubes in a time-dependent manner. The level of SOCS-3 mRNA was also significantly increased after 3hr of IGF-I (10-100 ng/ml) treatment. However, the levels of SOCS-3 mRNA were significantly decreased after 24 and 48 hr of IGF-I (10-100 ng/ml) treatment compared to the control. In conclusion, SOCS-3 protein is induced by IGF-I treatment in C2C12 skeletal muscle cells and this induction is regulated pretranslationally. The modulating effect of IGF-I on SOCS-3 expression may be an important regulator of gene expression in skeletal muscle cells.