• Title/Summary/Keyword: IGF-1 expression

Search Result 208, Processing Time 0.03 seconds

Alteration of Insulin-like Growth Factor(IGF)-I and IGF-Binding Proteins in Renal Development and Regeneration (신장발육 및 재생에 따른 insulin-like growth factor(IGF)-I 및 IGF-binding protein의 변화)

  • Park Sung-Kwang;Koh Gou-Young;Lee Dae-Yeol
    • Childhood Kidney Diseases
    • /
    • v.3 no.2
    • /
    • pp.109-116
    • /
    • 1999
  • Purpose: Insulin-like growth factor(IGF)-I and -II are peptide growth factor whose activity is modulated by interaction with the family of six IGF-binding proteins(IGFBPs). IGF-I is detected in rat kidney and has metabolic and growth effects. This study was designed to examine temporal expression of IGFBPs in kidney during renal development and postischemic regeneration in rat. Method: The expression of IGFBPs in kidney during renal development from 15th day of gestation to adult life by using Northern blot analysis. We also examined the renal IGF-IGFBP axis in uremic rat by using Northern blot and immunohistochemistry. Results: The mRNA of IGFBP-1 and -3 were not or barely detected in fetal stages. However, the mRNA level of IGFBP-1 and -3 were increased gradually from day 7 after birth to adult. In contrast, the mRNA of IGFBP-2 and -5 were highly expressed in fetal stages and maintained almost same levels until day 7 (IGFBP-2) or day 30 (IGFBP-5) after birth, then their levels decreased markedly. The mRNA of IGFBP-4 were expressed moderately in fetal kidney and increased gradually after birth. Interestingly, the mRNA of IGFBP-1 and-4 were induced up to 3-5 fold during maximum regeneration period and were recovered to normal levels after acute ischemic injury. In contrast, the mRNA level of IGFBP-3 and-IGFBPrP-1 were decreased slightly at 1 day after ischemic injury, then recovered to normal level during maximum regeneration period. Conclusion: There were differential expressions of IGFBPs in kidney that can modulate IGF action on developing, differentiating, maintaining, and regenerating renal structure and function.

  • PDF

The Imprinted Messenger RNA Expression in Cloned Porcine Pre-implantation Embryos

  • Park, Mi-Rung;Kim, Bong-Ki;Lee, Hwi-Cheul;Lee, Poong-Yeon;Hwang, Seong-Soo;Im, Gi-Sun;Woo, Jae-Seok;Cho, Chang-Yeon;Choi, Sun-Ho;Kim, Sang-Woo;Ko, Yeoung-Gyu
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.127-131
    • /
    • 2010
  • The objective of this study was to determine the mRNA expression patterns of several putative imprinted genes in in vivo and in vitro fertilized, parthenogenetic, and cloned porcine preimplantation embryos. Both maternally (Dlk1, IGF2, Peg1/Mest and Ndn) and paternally (IGF2r, H19 and Xist) imprinted genes were selected. We have used reverse transcription polymerase chain reaction (RT-PCR) to investigate gene expression patterns in the porcine embryos. IGF2 transcripts were detected in the most of embryos. In nuclear transfer (NT), Peg1/MEST transcripts showed fluctuating pattern. Dlk1 was only expressed partially from the morula and blastocyst stage of NT embryos. Ndn gene expression was started somewhat early for in vivo embryos. However, the expressions of maternally imprinted genes were similar in all types of blastocysts (NT, in vivo and in vitro fertilized, and parthenogenetic embryos). The IGF2R gene expression level was somewhat irregular and varied among samples. However, for the majority samples of all types of embryos, IGF2R expression was diminished after one- to two-cell stages and reappeared at the morulae or blastocyst stage embryos. H19 gene was only expressed early in parthenogenetic and in vivo embryos. For NT embryos, H19 was only expressed in blastocysts. Xist expression was detected in all blastocysts with the earliest being in vivo 8-cell stage embryos and the last one being NT blastocysts. These putative imprinted genes appeared to have stage specific expression patterns with a fluctuating pattern for some genes (Peg/Mest, IGF2r, H19). These results suggest that stage specific presence of imprinted genes can affect the embryo implantation and fetal development.

Insulin activates EGFR by stimulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells

  • Shin, Miyoung;Yang, Eun Gyeong;Song, Hyun Kyu;Jeon, Hyesung
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.342-347
    • /
    • 2015
  • The expression of epidermal growth factor receptor (EGFR) is an important diagnostic marker for triple-negative breast cancer (TNBC) cells, which lack three hormonal receptors: estrogen and progesterone receptors as well as epidermal growth factor receptor 2. EGFR transactivation can cause drug resistance in many cancers including TNBC, but the mechanism underlying this phenomenon is poorly defined. Here, we demonstrate that insulin treatment induces EGFR activation by stimulating the interaction of EGFR with insulin-like growth factor receptor 1 (IGF-1R) in the MDA-MB-436 TNBC cell line. These cells express low levels of EGFR, while exhibiting high levels of IGF-1R expression and phosphorylation. Low-EGFRexpressing MDA-MB-436 cells show high sensitivity to insulinstimulated cell growth. Therefore, unexpectedly, insulin stimulation induced EGFR transactivation by regulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells. [BMB Reports 2015; 48(6): 342-347]

Effect of Simple Formulas of Muscle Section in Donguibogam on Myogenic Regulatory Factors and IGF-1 Expression in C2C12 Cells

  • Yang, In Jun;Tettey, Clement;Shin, Heung Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.411-416
    • /
    • 2014
  • Simple formulas (單方) of muscle section in Donguibogam (東醫寶鑑) have long been prescribed for strengthening muscle and/or prevention of age-related muscle loss. However, biological activity and mechanisms by which they influence myoblast differentiation have not been studied. Therefore, in this study, we evaluated the effects of 14 simple formulas on myoblast differentiation in C2C12 myoblast cells under non-cytotoxic ($0.5mg/m{\ell}$) conditions. C2C12 cells were treated with water extracts of simple formulas for 72 h, and RT-PCR was performed to determine the gene expression levels of myogenic regulatory factors (MRFs), including myoD, myogenin, MRF4, myf5, and insulin like growth factor-1 (IGF-1). Treatment with Colocasiae Rhizoma (CR), Pini Semen (PS), and Sesami Semen (SS) resulted in a significant increase in expression of myogenin in C2C12 cells. Treatment with Allii Macrostemi Bulbus (AM), Colocasiae Rhizoma (CR), and Pini Semen (PS) also resulted in increased expression of MRF4 in C2C12 cells. In addition, enhanced expression of IGF-1 was observed in treatment with Eucommiae cortex (EC), Dioscoreae Rhizoma (DR), Colocasiae Rhizoma (CR), Pini Semen (PS), and Sesami Semen (SS) in C2C12 cells. These results indicate that simple formulas of muscle section in Donguibogam could potentially enhance myoblast differentiation at least in part via increasing expression of myogenin, and/or MRF4 and/or IGF-1.

Protein variation and involvement of insulin-like growth factor during embryonic development in the olive flounder Paralichthys olivaceus

  • Kim, Kang-Woong;Nam, Taek Jeong;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.2
    • /
    • pp.4.1-4.5
    • /
    • 2018
  • Insulin-like growth factors (IGFs), along with IGF-binding protein and IGF receptor, are well-known regulators in the growth and survival of vertebrates. In this study, we investigated the involvement of IGFs and protein variation during embryonic development of the olive flounder (Paralichthys olivaceus). Morphological stages were divided into six main developments as blastula, gastrula, cephalization, cranial regionalization, tail lift, and hatch. During embryonic development, protein variation was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization quadrupole time-of-flight mass spectrometry/mass spectrometry. In addition, the mechanism of signaling of IGF-I receptor was examined using immuno-blot analysis. We found marked changes in protein expression at four stages of embryonic development and identified proteins as belonging to the vitellogenin 2 family. As development progresses, expression of IGF-II, phosphotyrosine, and phospho-Akt increased, while expression of growth factor receptor-bound protein 2 (GRB2) and one of guanine-nucleotide-binding proteins (Ras) decreased. These results provide basic information on the IGF system in the embryonic development of the olive flounder.

Knock-in Vector for Expression of Insulin-like Growth Factor 1 on the Bovine β-casein Gene Locus (소 β-casein 유전자 영역에서 소 Insulin-like Growth Factor 1을 생산하기 위한 Knock-in Vector)

  • Kim, Sang Young;Park, Da Som;Kim, Se Eun;Koo, Deog-Bon;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.41 no.3
    • /
    • pp.51-55
    • /
    • 2017
  • The production of therapeutic protein from transgenic domestic animal is the major technology of biotechnology. Insulin-like growth factor-1 (IGF-1) is known to play an important role in the growth of the animal. The objective of this study is construction of knock-in vector that bovine IGF-1 gene is inserted into the exon 7 locus of ${\beta}$-casein gene and expressed using the gene regulatory DNA sequence of bovine ${\beta}$-casein gene. The knock-in vector consists of 5' arm region (1.02 kb), bIGF-1 cDNA, CMV-EGFP, and 3' arm region (1.81 kb). To express bIGF-1 gene as transgene, the F2A sequence was fused to the 5' terminal of bIGF-1 gene and inserted into exon 7 of the ${\beta}$-casein gene. As a result, the knock-in vector is confirmed that the amino acids are synthesized without termination from the ${\beta}$-casein exon 7 region to the bIGF-1 gene by DNA sequence. These knock-in vectors may help to create transgenic dairy cattle expressing bovine bIGF-1 protein in the mammary gland via the expression system of the bovine ${\beta}$-casein gene.

MiR-323-5p acts as a Tumor Suppressor by Targeting the Insulin-like Growth Factor 1 Receptor in Human Glioma Cells

  • Lian, Hai-Wei;Zhou, Yun;Jian, Zhi-Hong;Liu, Ren-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10181-10185
    • /
    • 2015
  • Background: MicroRNAs, small noncoding RNA molecules, can regulate mammalian cell growth, apoptosis and differentiation by controlling the expression of target genes. The aim of this study was to investigate the function of miR-323-5p in the glioma cell line, U251. Materials and Methods: After over-expression of miR-323-5p using miR-323-5p mimics, cell growth, apoptosis and migration were tested by MTT, flow cytometry and cell wound healing assay, respectively. We also assessed the influence of miR-323-5p on the mRNA expression of IGF-1R by quantitative real-time reverse transcriptase PCR (qRT-PCR), and on the protein levels by Western blot analysi. In addition, dual-luciferase reporter assays were performed to determine the target site of miR-323-5p to IGF-1R 3'UTR. Results: Our findings showed that over-expression of miR-323-5p could promote apoptosis of U251 and inhibit the proliferation and migration of the glioma cells. Conclusions: This study demonstrated that increased expression of miR-323-5p might be related to glioma progression, which indicates a potential role of miR-323-5p for clinical therapy.

Enhancement of Sensitivity of Human Lung Cancer Cell Line to TRAIL and Gefitinib by IGF-1R Blockade (폐암세포주에서 IGF-1R 억제를 이용한 TRAIL 및 gefitinib에 대한 감수성 증가를 위한 연구)

  • Lee, Yoon-Jin;Park, Mi-Young;Kang, Young-Ae;Kwon, Sung-Youn;Yoon, Ho-Il;Lee, Jae-Ho;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.1
    • /
    • pp.42-51
    • /
    • 2007
  • Background: TRAIL is a cytokine that selectively induces apoptosis in various cancer cell lines. Gefitinib is new targeted drug applied in lung cancer that selectively inhibits EGFR tyrosine kinase. However, lung cancers have shown an initial or acquired resistance to these drugs. This study examined the effect of IGF-1R and its blockade on enhancing the sensitivity of lung cancer cell lines to TRAIL and gefitinib. Methods: Two lung cancer cell lines were used in this study. NCI H460 is very sensitive to TRAIL and gefitinib. On the other hand, A549 shows moderate resistance to TRAIL and gefitinib. The IGF-1R blockade was performed using adenoviruses expressing the dominant negative IGF-1R and shRNA to IGF-1R and AG1024 (IGF-1R tyrosine kinase inhibitor). Results: The adenovirus expressing dominant negative IGF-1R(950st) induced the increased expression of defective IGF-1R on the lung cancer cell surface, and the adenovirus-shIGF-1R effectively decreased the level of IGF-1R expression on cell surface. The genetic blockade of IGF-1R by the adenovirus-dnIGF-1R and AG1024 increased the sensitivity of A549 cells to TRAIL. The reduction of IGF-1R by transduction with ad-shIGF-1R also increased the sensitivity of the A549 cells to gefitinib. Conclusion: The blockade of IGF-1R through various mechanisms increased the sensitivity of the lung cancer cell line that was resistant to TRAIL and gefitinib. However, further studies using other cell lines showing acquired resistance as well as in vivo animal experiments will be needed.

Linseed oil supplementation affects fatty acid desaturase 2, peroxisome proliferator activated receptor gamma, and insulin-like growth factor 1 gene expression in turkeys (Meleagris gallopavo)

  • Szalai, Klaudia;Tempfli, Karoly;Zsedely, Eszter;Lakatos, Erika;Gaspardy, Andras;Papp, Agnes Bali
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.662-669
    • /
    • 2021
  • Objective: Effects of linseed oil (LO) supplementation on the fat content and fatty acid profile of breast meat, and the expression of three genes in the liver, breast muscle and fat tissues of commercial 154-day-old hybrid male turkeys were investigated. Methods: The animals in the control group were fed a commercially available feed and received no LO supplementation (n = 70), whereas animals in the LO group (n = 70) were fed the same basic diet supplemented with LO (day 15 to 21, 0.5%; day 22 to 112, 1%). The effect of dietary LO supplementation on fatty acid composition of breast muscle was examined by gas chromatography, and the expression of fatty acid desaturase 2 (FADS2), peroxisome proliferator activated receptor gamma (PPARγ), and insulin-like growth factor 1 (IGF1) genes was analysed by means of quantitative reverse transcription polymerase chain reaction. Results: The LO supplementation affected the fatty acid composition of breast muscle. Hepatic FADS2 levels were considerably lower (p<0.001), while adipose tissue expression was higher (p<0.05) in the control compared to the LO group. The PPARγ expression was lower (p<0.05), whereas IGF1 was higher (p<0.05) in the fat of control animals. There were no significant (p>0.05) differences in FADS2, PPARγ, and IGF1 gene expressions of breast muscle; however, omega-6/omega-3 ratio of breast muscle substantially decreased (p<0.001) in the LO group compared to control. Conclusion: Fatty acid composition of breast meat was positively influenced by LO supplementation without deterioration of fattening parameters. Remarkably, increased FADS2 expression in the liver of LO supplemented animals was associated with a significantly decreased omega-6/omega-3 ratio, providing a potentially healthier meat product for human consumption. Increased PPARγ expression in fat tissue of the LO group was not associated with fat content of muscle, whereas a decreased IGF1 expression in fat tissue was associated with a trend of decreasing fat content in muscle of the experimental LO group.

Growth Regulation in IGF-1 Receptor Transgenic Mice

  • Kim Hyun-Joo;Shin Young-Min;Chang Suk-Min;Park Chang-Sik;Jin Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.30 no.2
    • /
    • pp.93-97
    • /
    • 2006
  • To study the signaling effect of insulin-like growth factor-I(IGF-1), transgenic mice containing IGF-1 Receptor (IGF-1R) cDNA fused to metallothionein promoter were produced by DNA microinjection into the pronucleus of mouse zygote. Three founders were produced with transgenic mice containing IGF-1R gene. Transgenic mice lines contained approximately $4{\sim}20$ copies of transgenes per cell and transmission of this gene into the progeny with Mendelian manner were determined. The founder mice were mated with normal mice to produce $F_1$ mice and then $F_2$ mice. Transmission rates of IGF-1R transgene in the progeny mice were $25{\sim}60%$ in $F_1$ generation and $40{\sim}50%$ in $F_2$ generation. The mRNA expression of IGF-1R transgene in liver was analyzed using RT-PCR for IGF-1R gene in liver. When body weights of transgenic pups were measured during 4, 10 and 14 weeks after birth, IGF-1R transgenic mice grew faster than non transgenic littermates. This study indicated that growth regulation by IGF-1 signaling through IGF-1R can be elucidated using IGF-1R transgenic mice.