• Title/Summary/Keyword: IGCC syngas

Search Result 55, Processing Time 0.027 seconds

A study on the engineering optimization for the commercial scale coal gasification plant (상용급 석탄가스화플랜트 최적설계에 관한 연구)

  • Kim, Byeong-Hyeon;Min, Jong-Sun;Kim, Jae-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • This study was conducted for engineering optimization for the gasification process which is the key factor for success of Taean IGCC gasification plant which has been driven forward under the government support in order to expand to supply new and renewable energy and diminish the burden of the responsibility for the reduction of the green house gas emission. The gasification process consists of coal milling and drying, pressurization and feeding, gasification, quenching and HP syngas cooling, slag removal system, dry flyash removal system, wet scrubbing system, and primary water treatment system. The configuration optimization is essential for the high efficiency and the cost saving. For this purpose, it was designed to have syngas cooler to recover the sensible heat as much as possible from the hot syngas produced from the gasifier which is the dry-feeding and entrained bed slagging type and also applied with the oxygen combustion and the first stage cylindrical upward gas flow. The pressure condition inside of the gasifier is around 40~45Mpg and the temperature condition is up to $1500{\sim}1700^{\circ}C$. It was designed for about 70% out of fly ash to be drained out throughout the quenching water in the bottom part of the gasifier as a type of molten slag flowing down on the membrane wall and finally become a byproduct over the slag removal system. The flyash removal system to capture solid particulates is applied with HPHT ceramic candle filter to stand up against the high pressure and temperature. When it comes to the residual tiny particles after the flyash removal system, wet scurbbing system is applied to finally clean up the solids. The washed-up syngas through the wet scrubber will keep around $130{\sim}135^{\circ}C$, 40~42Mpg and 250 ppmv of hydrochloric acid(HCl) and hydrofluoric acid(HF) at maximum and it is turned over to the gas treatment system for removing toxic gases out of the syngas to comply with the conditions requested from the gas turbine. The result of this study will be utilized to the detailed engineering, procurement and manufacturing of equipments, and construction for the Taean IGCC plant and furthermore it is the baseline technology applicable for the poly-generation such as coal gasification(SNG) and liquefaction(CTL) to reinforce national energy security and create new business models.

  • PDF

A Study on Technology Status and Project of Hydrogen Production from Coal Gasificiation (석탄가스화를 이용한 수소생산 기술현황 및 프로젝트 분석)

  • Seungmo Ko;Hochang Jang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Coal gasification is a process of incomplete coal combustion to produce a syngas composed of hydrogen and carbon monoxide. It is one of methods to utilize coal cleanly because the process does not emits nitrogen oxides or sulfur oxides and particulate matters. In addition, chemicals can be produced using syngas. Coal gasification is classified as IGCC (Integrated Gasification Combined Cycle), Plasma coal gasification and UCG (Underground Coal Gasification). Recently, WGS (Water Gas Shift) reactor and carbon capture system have been combined to gasifier to produce hydrogen from coal. In this study, the coal gasification and method of hydrogen production from syngas was summarized, and the hydrogen production from coal gasification project was investigated.

Plant Performance Analysis for IGCC Employing HGCU(I) (고온정제를 적용한 IGCC 플랜트 성능 해석에 관한 연구(I))

  • 이윤경;서석빈;김종진
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.157-162
    • /
    • 2000
  • 기존의 IGCC의 장점인 고효율 플랜트의 특성을 살리기 위해 고온정제를 적용하는 경우 조건변화에 따른 플랜트 성능의 영향을 관찰하고자 본 연구를 수행하였다. IGCC에 고온정제 공정을 적용하여 구성한 모델은 연구 목적에 알맞은 범위의 건전성을 가진 것으로 나타났으며 기타 조건을 동일하게 설정한 경우 저온 정제 공정(MDEA amine) 적용에 비해 플랜트 효율이 약 2.7% 가량 상승하였다. 한편 동일한 고온정제 공정이라도 적용하는 흡수제를 zinc titanate에서 zinc ferrite로 달리 하는 경우 탈황제의 화학 반응상 특성 및 차이점으로 인해 연료가스의 발열량 변화를 유발하므로 결과적으로 약 0.5%의 플랜트 효율 손실이 발생함을 알 수 있었다. 또한 탈황 온도 350~$650^{\circ}C$ 사이의 온도범위에 대해 민감도 분석을 실행하였으며 민감도 분석 결과 전제 온도의 증가와 플랜트 효율은 정비례하지 않으며 50$0^{\circ}C$ 이상의 정제 온도를 적용한 경우는 거의 비슷한 효율을 나타내었다. 이와 같은 결과는 정제 온도를 증가시킴으로 인해 가스터빈에 공급되는 연료가스의 온도는 높아지지만 적용한 가스터빈의 출력 및 연소 온도가 제한되어 있어 고온정제를 적용함으로써 얻어지는 이득을 가스터빈에서 충분히 보상하지 못하고 한편으로 고온정제를 채택함으로써 저온정제 적용시 보다 syngas cooler에서 회수할 수 있는 헌열이 줄어듦으로 인한 증기 터빈 출력의 감소가 커지기 때문으로 분석되었다.

  • PDF

Performance Analysis of a Gas Turbine for Integrated Gasification Combined Cycle (석탄가스화 복합화력 발전용 가스터빈 성능해석)

  • Lee, J.J.;Cha, K.S.;Sohn, J.L.;Kim, T.S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.771-774
    • /
    • 2007
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed with hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of the syngas to the performance of a gas turbine in a combined cycle power plant. For this purpose, a commercial gas turbine is selected and its performance characteristics are analyzed with syngas. It is found that different heating values of those fuels and chemical compositions in their combustion gases are the causes in the different performance characteristics. Also, Changing of turbine inlet Mass flow lead to change the turbine matching point, in the event the pressure ratio is changed.

  • PDF

Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant

  • Joo, Yong-Jin;Kim, Mi-Yeong;Park, Se-Ik;Seo, Dong-Kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.415-419
    • /
    • 2016
  • As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.

The Comparative Study on the Gasification Process between Coal Water Slurry and Dry Pulverized Coal (습식 및 건식 석탄가스화공정에 대한 비교 연구)

  • Shim, Hyun-Min;Wang, Hong-Yue;Jung, Su-Yong;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.788-791
    • /
    • 2007
  • 기존의 미분탄 화력발전을 대체할 수 있는 차기 주자인 가스화복합발전(Integrated Gasification Combined Cycle) 기술은 단순히 열과 전기를 얻는데 그치지 않고 $CO_2$ 저감뿐만 아니라 다양한 형태의 2차 에너지원과 화학원료를 생산할 수 있는 기술이다. 상용화 운전 중인 기존의 IGCC 플랜트는 석탄 공급에 있어 건조된 미분탄(dry pulverized coal) 형태로 공급하는 건식 형태와 석탄슬러리(Coal water slurry)의 액상으로 공급하는 습식 형태로 대별되고 있다. 본 연구에서는 ASPEN plus를 이용하여 상용화 IGCC 플랜트에 대한 기본 모델을 구축하였으며, 산지별로 대상 탄종을 illinois #6(미국), Shenhua(중국), Drayton(호주)로 선정하여 가스화공정에 대한 성능을 해석하였다. 동일한 발전 출력을 얻고자 하였을 때, 석탄의 공급방식에 따라 필요한 석탄과 유틸리티 공급량과 가스화기 전${\cdot}$후단에서의 운전특성과 생성되는 합성가스(syngas) 조성, 냉가스(cold gas) 효율 및 탄소 전환율을 통해 각 case에 대한 플랜트 특성을 비교하였다.

  • PDF

Numerical Study on the Stabilization of Turbulent Swirling Lifted Premixed Syngas Flames (석탄가스 난류선회유동 예혼합부상화염의 안정성 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.349-352
    • /
    • 2008
  • This study has numerically modeled the combustion processes of the turbulent swirling premixed lifted syngas flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role of stabilizing the turbulent lifted flames. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Numerical results indicate clearly that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling premixed lifted flames in the low-swirl burner. Computations are made for the wide range of the syngas chemical composition and the dilution level at two pressure conditions (1.0, 5.0 bar). Numerical results indicate that the lifted height in the LSB is increased by decreasing the H2 percentage and increasing the dilution level at the given equivalence ratio. It is also found that the flashback is occurred for the hydrogen composition higher than 80% at the equivalence ratio, 0.8. However, at the syngas composition range in the IGCC system, the stable lean-premixed lifted flames are formed at the low-swirl burner.

  • PDF

The Gasifier Operation Method using Bio Gas (바이오가스를 이용한 가스화기 운전 방안)

  • Lee, Joongwon;Joo, Yongjin;Chung, Jaehwa;Park, Seik;Kim, Uisik
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.3
    • /
    • pp.249-254
    • /
    • 2013
  • The integrated gasification combined cycle (IGCC) system is well known for its high efficiency compared with other coal fueled power generation system. The aim of this study is to confirm the feasibility of using bio gas in coal feeding system and syngas recirculation system. The effects of using bio gas in the gasifier on the syngas composition were investigated through simulations using the Aspen Plus process simulator. It was found that these changes had an influence on the syngas composition of the final stream and bio gas can be used in a gasifier system.

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 1 : Flame Stability (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 1 : 화염안정성)

  • Lee, Min Chul;Joo, Seong Pil;Yoon, Jisu;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.632-638
    • /
    • 2013
  • This paper describes on the flame stability and combustion instability of coal derived synthetic gas especially for gases of Buggenum IGCC in Netherlands and Taean IGCC in Korea. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Flame stability map is plotted according to the flame structure by dividing all regimes into six, and only regime I and II are identified to be stable. Both syngases of Taean and Buggenum with nitrogen integration corresponds to regime II in which syngas burnt stably and flame coupled with outer recirculation flow. Stable regime of Buggenum is larger than that of Taean when considering only $H_2$/CO ratio due to higher content of hydrogen. However, when considering nitrogen dilution, syngas of Taean is burnt more stably than that of Buggenum since more nitrogen in Buggenum has negative effect on the stability of flame.

Fabrication and Properties of SiC Candle Filter by Vacuum Extrusion and Ramming Process (II) (진공 압출성형 및 래밍성형 공정에 의한 탄화규소 캔들 필터 제조 및 특성 (II))

  • Han, In-Sub;Seo, Doo-Won;Kim, Se-Young;Hong, Ki-Seog;Woo, Sang-Kuk;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.515-523
    • /
    • 2010
  • Porous SiC candle filter preforms were fabricated by extrusion and ramming process. To fabricate SiC candle filter preform, commercially available F180 mesh ($85\;{\mu}m$) $\alpha$-SiC powder and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as the starting materials. The candle type preforms were fabricated by vacuum extrusion and ramming process, and sintered at $1400^{\circ}C$ 2 h in air atmosphere. Corrosion test of the sintered candle filter specimens as forming method was performed at $600^{\circ}C$ for 2,400 h in simulated IGCC syngas atmosphere. The effect of forming method on mechanical properties, pore distribution, microstructure and crystalline phase was investigated.