• Title/Summary/Keyword: IGBT PWM Rectifier

Search Result 25, Processing Time 0.021 seconds

A Study on the Algorithm for Single Phase Control of IGBT PWM Rectifier (IGBT PWM Rectifier의 각상 개별제어 알고리즘에 관한 연구)

  • Kim, Seung-Ho;Park, Jae-Beom;Tae, Dong-Hyun;Kim, Seung-Jong;Song, Joong-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.26-33
    • /
    • 2016
  • Recently, the use of transformer-less UPS has increased to improve the efficiency of UPS. However, transformer-less UPS is required in three-phase four-wire input IGBT PWM rectifier and the existing three-phase three-wire PFC algorithm cannot be applied in the three-phase four-wire system due to the neutral current problem of UPS input. To control the three-phase four-wire input IGBT PWM rectifier, there are two existing algorithms: 3D SVM and single phase control method. These two algorithms have advantages/disadvantages in controlling the rectifier. The single phase control method is unstable for controlling the rectifier and the 3D SVM method has a problem that must increase the L value of the input-side inductor considerably. Therefore, this paper proposes digital single phase control technology and another new algorithm considering the d-q control, to improve the characteristics of the existing control algorithm. In addition, this paper performed a simulation and experiment based on the proposed control algorithm. The simulation results showed that the proposed technology can control three-phase four-wire IGBT PWM rectifier in a stable manner and can also reduce the neutral current. The proposed algorithm is a useful tool for controlling the three-phase four-wire IGBT PWM rectifier.

The Parallel Operation of Single Phase PWM Rectifier using IGBT (IGBT를 이용한 단산 PWM정류기 병렬운전)

  • 이현원;장성영;김연준;이광주;김남해
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.122-125
    • /
    • 1999
  • The AC-to-DC single-phase PWM rectifier for traction applications using high power semiconductor, IGCT is made and tested. Parallel operation of two PWM converter is adopted for increasing capacity of converters. For reducing harmonics, the harmonic content is eliminated by the phase shift between two converters switching phase. The output voltage control is achieved by interns calculation without detecting the input current. The part of PLL used for controlling power factor is simply implemented by software.

  • PDF

Design of Power Factor Correction High Efficiency PWM Single-Phase Rectifier (역률보상 고효율 PWM 단상 정류기의 설계)

  • Choi, Seong-Hun;Kim, In-Dong;Nho, Eui-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.540-548
    • /
    • 2007
  • The parer proposes a power factor correction high efficiency PWM single-phase rectifier. Its good characteristics such as simple PWM control, low switch stress, and low VAR rating of commutation circuits make the proposed rectifier very suitable for various unidirectional power applications. In addition, the proposed rectifier consists of three boost-converter-type IGBT modules with the switching devices located at the bottom leg of the rectifier scheme, which also enables the use of the same power supply in both control and gate driver, thus resulting in simple control and power circuit structure. The detailed principle of operation and experimental results are also included. In particular, the design guide line is also suggested to make the circuit design of the proposed rectifier easy and fast.

Development of PWM Converter System for Solar Cell Silicon Ingot Glowing 120kW 3kA (태양전지 실리콘 결정 성장용 120kW 3kA PWM 컨버터 시스템 개발)

  • Kim, Min-Huei;Park, Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • This paper is research result for a development of solar cell silicon ingot glowing(SCSIG) PWM converter system for 120[kW] 3[kA]. The system include 3-phase AC-DC rectifier diode converter of input voltage AC 460[V] and 60[Hz], DC-AC single phase full bridge PWM inverter of high frequency, AC-DC single-phase full wave rectifier using center-tapped of transformer for low voltage 50[V] and large current 3,000[A], carbon resistor load 0.2 [$m{\Omega}$]. PWM switching frequency for IGBT inverter control set 15KHz. The suggested researching contents are designed data sheets of power converter system, PSIM simulation, operating characteristics and analysis results of developed SCSIG system.

Development of PWM Converter System for Sapphire Silicon Ingot Glowing of 80kW 10kA (사파이어 실리콘 결정 성장용 80kW 10kA PWM 컨버터 시스템 개발)

  • Kim, Min-Huei;Park, Young-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.33-41
    • /
    • 2014
  • This paper is research result for a development of sapphire silicon ingot glowing(SSIG) PWM converter system for 80kW 10kA. The system include 3-phase AC-DC diode rectifier of input voltage AC 380V and 60Hz, DC-AC single phase full bridge PWM inverter of high frequency, AC-DC single-phase full wave rectifier using center-tapped of transformer for low voltage 8.0V and large current 10,000A of output specification, tungsten resistor load 0.1[$m{\Omega}$]. PWM switching frequency for IGBT inverter control set 30kHz. The suggested researching contents are designed data sheets of power converter system, PSIM simulation, operating characteristics and analysis results of developed SSIG system. This paper propose

A Study on DC Traction Power Supply System Using PWM Converter (PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구)

  • Kim, Joorak;Park, Chang-Reung;Park, Kijun;Kim, Joo-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.

Novel Converter Topology for a Three Phase to Three Phase PWM Rectifier/Inverter System (비용절감형 컨버터 구조를 갖는 3상-3상 PWM 정류기/인버터 시스템)

  • Kim, Gi-Taek;Park, Tae-Yeol;Lee, Hae-Chun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.323-328
    • /
    • 1998
  • A current controlled VSI-PWM rectifier and inverter with capacitor dc link is regarded as one of the most promising structures for three-phase to three-phase to three-phase power conversion. This type of converter normally requires twelve switches for a rectifier and inverter composed of self turn-off switch such as a bi-polar transistor or IGBT with an anti-parallel diode. In this paper, a new three-phase to three-phase converter for ac motor drives is proposed. The proposed converter employs only eight switches and has the capability of delivering sinusoidal input currents with unity power factor and bidirectional power flow. This paper describes the feasibility and the operational limitations of the proposed structure. A mathematical model of the system is derived using generalized modulation theory and experimental results for steady state and dynamic behavior are presented to verify the developed model.

  • PDF

Modelling and Design of Control Circuit of Induction Heating Power Supply for Forging Application Using Current Source PWM Rectifier and Inverter (전류원 PWM 정류기 / 인버터를 이용한 단조용 유도가열 전원장치의 제어회로 모델링 및 설계)

  • Cjoi, Seung-Soo;Go, Moo-Seok;Kim, In-dong;Jung, Jang Han;Seo, Dong Hoan
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.159-161
    • /
    • 2019
  • 현재 단조용 유도가열 전원으로 사용되는 전류원 SCR 정류기 / 인버터는 입력단의 낮은 역률과 높은 THd를 갖는다. 이러한 단점들 때문에 최근 유도가열 전원장치로써 IGBT PWM 전류원 정류기 및 인버터회로가 연구되고 있다. 본 논문에서는 IGBT PWM 정류기 및 인버터의 제어회로를 제안하고 제어회로의 모델링을 통해 제어기를 설계하여 실험을 통해 그 성능을 검증하였다.

  • PDF

Module-Type Switching Rectifier for Cathodic Protection of Underground and Maritime Metallic Constructions (지하매설 및 해양 금속구조물 음극방식용 모듈 타입 스위칭 정류기)

  • 문상호;김보경;김인동;노의철;권영원;정성우;임헌호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.570-578
    • /
    • 2002
  • Cathodic protection is widely used to prevent corrosion of steel materials buried in the underground and sea. As a rectifier for cathodic protection, the conventional phase-controlled rectifiers have been used so far in spite of such shortcomings as large volume, heavy weight and floor power factor. In order to overcome such disadvantages, this paper proposes a new module-type switching rectifier for cathodic protection, which is composed of two parts, namely, AC/DC converter and module- type DC/DC converter. The AC/DC converter is a single-phase IGBT PWM rectifier, thus resulting in almost unity power factor and controlled DC output voltage. The module-type DC/DC converter operates under ZVS/ZCS switching condition to permit high frequency switching operation. It enables to use high-frequency transformer for electrical isolation, thus reducing volume and weight of overall system and improving system efficiency. It should be anticipated that the proposed rectifier techniques apply to the similar technical areas.

Analysis and Control of Cost-Effective Topologies for Single Phase to Three Phase Power Converter (비용절감형 단상-삼상 전력변환기 구조의 해석 및 제어)

  • Lee, Hae-Chun;Park, Tae-Yeol;Kim, Gi-Taek
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.217-226
    • /
    • 1999
  • A single phase to three phase power converter with cost effective and simple structure is proposed. The converter consists of rectifier and inverter. The rectifier is composed of a half wave rectifier, a dc link capacitor, and a current limiting inductor, and the inverter is of only two switches with PWM control. For negative sequence operation the inverter output voltage leads the line input by $60^{\circ}$, and for positive sequence operation the inverter output voltage leads by $60^{\circ}$. We can see that positive sequence operation shows higher output voltage, slight harmonic distortion(2%), and better performances such as high efficiency and high power factor. A mathematical model for system analysis is provided, and specifications for selection and control scheme both for start-up and for steady state are analyzed. comparison and operational limits of positive and negative sequence operation are performed, and simulations and experiments are executed to verify the proposed.

  • PDF