• Title/Summary/Keyword: IGA method

Search Result 30, Processing Time 0.023 seconds

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

Isogeometric analysis of the seismic response of a gravity dam: A comparison with FEM

  • Abdelhafid Lahdiri;Mohammed Kadri
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.81-96
    • /
    • 2024
  • Modeling and analyzing the dynamic behavior of fluid-soil-structure interaction problems are crucial in structural engineering. The solution to such coupled engineering systems is often not achievable through analytical modeling alone, and a numerical solution is necessary. Generally, the Finite Element Method (FEM) is commonly used to address such problems. However, when dealing with coupled problems with complex geometry, the finite element method may not precisely represent the geometry, leading to errors that impact solution quality. Recently, Isogeometric Analysis (IGA) has emerged as a preferred method for modeling and analyzing complex systems. In this study, IGA based on Non-Uniform Rational B-Splines (NURBS) is employed to analyze the seismic behavior of concrete gravity dams, considering fluid-structure-foundation interaction. The performance of IGA is then compared with the classical finite element solution. The computational efficiency of IGA is demonstrated through case studies involving simulations of the reservoir-foundation-dam system under seismic loading.

Simultaneous Optimization of Gene Selection and Tumor Classification Using Intelligent Genetic Algorithm and Support Vector Machine

  • Huang, Hui-Ling;Ho, Shinn-Ying
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.57-62
    • /
    • 2005
  • Microarray gene expression profiling technology is one of the most important research topics in clinical diagnosis of disease. Given thousands of genes, only a small number of them show strong correlation with a certain phenotype. To identify such an optimal subset from thousands of genes is intractable, which plays a crucial role when classify multiple-class genes express models from tumor samples. This paper proposes an efficient classifier design method to simultaneously select the most relevant genes using an intelligent genetic algorithm (IGA) and design an accurate classifier using Support Vector Machine (SVM). IGA with an intelligent crossover operation based on orthogonal experimental design can efficiently solve large-scale parameter optimization problems. Therefore, the parameters of SVM as well as the binary parameters for gene selection are all encoded in a chromosome to achieve simultaneous optimization of gene selection and the associated SVM for accurate tumor classification. The effectiveness of the proposed method IGA/SVM is evaluated using four benchmark datasets. It is shown by computer simulation that IGA/SVM performs better than the existing method in terms of classification accuracy.

  • PDF

An Interactive Approach based on Genetic Algorithm Using Hidden Population and Simplified Genotypes for Avatar Synthesis

  • Lee, Jayong;Lee, Janghee;Kang Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.120.1-120
    • /
    • 2002
  • In this paper, we propose an interactive genetic algorithm (IGA) to implement an automated 2D avatar synthesis. The IGA technique is capable of expressing user's personality in the avatar synthesis by using the user's response as a candidate for the fitness value. Our suggested IGA method isapplied to creating avatars automatically. Unlike the previous works, we introduce the concepts of 'hidden population', as well as 'primitive avatar' and 'simplified genotype', which are used to overcome the shortcomings of IGA such as human fatigue or reliability, and reasonable rates of convergence with a less number of iterations. The procedure of designing avatar models consists of two steps. The firl...

  • PDF

Study on Application of Isogeometric Analysis Method for the Dynamic Behavior Using a Reduced Order Modeling (축소 모델의 동적 거동 해석을 위한 등기하해석법 적용에 대한 연구)

  • Kim, Min-Geun;Kim, Soo Min;Lee, Geun-Ho;Lee, Hanmin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.275-282
    • /
    • 2018
  • Using isogeometric analysis(IGA) gives more accurate results for higher order mode in eigenvalue problem than using the finite element method(FEM). This is because the FEM has $C^0$ continuity between elements, whereas IGA guarantee $C^{P-1}$ between elements for p-th order basis functions. In this paper, a mode based reduced model is constructed by using IGA and dynamic behavior analysis is performed using this advantage. Craig-Bampton(CB) method is applied to construct the reduced model. Several numerical examples were performed to compare the eigenvalue analysis results for various order of element basis function by applying the IGA and FEM to simple rod analysis. We have confirmed that numerical error increases in the higher order mode as the continuity between elements decreases in the IGA by allowing internal knots multiplicity. The accuracy of the solution can be improved by using the IGA with high inter-element continuity when high-frequency external force acts on the reduced model for dynamic behavior analysis.

An Interactive Approach Based on Genetic Algorithm Using Ridden Population and Simplified Genotype for Avatar Synthesis

  • Lee, Ja-Yong;Lee, Jang-Hee;Kang, Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.167-173
    • /
    • 2002
  • In this paper, we propose an interactive genetic algorithm (IGA) to implement an automated 2D avatar synthesis. The IGA technique is capable of expressing user's personality in the avatar synthesis by using the user's response as a candidate for the fitness value. Our suggested IGA method is applied to creating avatars automatically. Unlike the previous works, we introduce the concepts of 'hidden population', as well as 'primitive avatar' and 'simplified genotype', which are used to overcome the shortcomings of IGA such as human fatigue or reliability, and reasonable rates of convergence with a less number of iterations. The procedure of designing avatar models consists of two steps. The first step is to detect the facial feature points and the second step is to create the subjectively optimal avatars with diversity by embedding user's preference, intuition, emotion, psychological aspects, or a more general term, KANSEI. Finally, the combined processes result in human-friendly avatars in terms of both genetic optimality and interactive GUI with reliability.

Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization

  • Roodsarabi, Mehdi;Khatibinia, Mohsen;Sarafrazi, Seyyed R.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1389-1410
    • /
    • 2016
  • This paper proposes a hybrid of topological derivative-based level set method (LSM) and isogeometric analysis (IGA) for structural topology optimization. In topology optimization a significant drawback of the conventional LSM is that it cannot create new holes in the design domain. In this study, the topological derivative approach is used to create new holes in appropriate places of the design domain, and alleviate the strong dependency of the optimal topology on the initial design. Furthermore, the values of the gradient vector in Hamilton-Jacobi equation in the conventional LSM are replaced with a Delta function. In the topology optimization procedure IGA based on Non-Uniform Rational B-Spline (NURBS) functions is utilized to overcome the drawbacks in the conventional finite element method (FEM) based topology optimization approaches. Several numerical examples are provided to confirm the computational efficiency and robustness of the proposed method in comparison with derivative-based LSM and FEM.

An Improved Genetic Algorithm for Fast Face Detection Using Neural Network as Classifier

  • Sugisaka, Masanori;Fan, Xinjian
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1034-1038
    • /
    • 2005
  • This paper presents a novel method to speed up neural network (NN) based face detection systems. NN-based face detection can be viewed as a classification and search problem. The proposed method formulates the search problem as an integer nonlinear optimization problem (INLP) and develops an improved genetic algorithm (IGA) to solve it. Each individual in the IGA represents a subwindow in an input image. The subwindows are evaluated by how well they match a NN-based face filter. A face is indicated when the filter response of the best particle is above a given threshold. Experimental results show that the proposed method leads to a speedup of 83 on $320{\times}240$ images compared to the traditional exhaustive search method.

  • PDF

Signal Characteristics of Eddy Current Test for Intergranular Attack of Steam Generator Tubes (증기발생기 전열관의 입계부식에 대한 와전류검사 신호특성)

  • Choi, Myung-Sik;Lee, Deok-Hyun;Cho, Se-Gon;Yim, Chang-Jae;Han, Jung-Ho;Hur, Do-Haeng
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.198-202
    • /
    • 2002
  • Beacuse intergranular attack (IGA), one of the locallized corrosion forms occurring on steam generator tubes, can not be fabricated by an electric discharge machining method, there are few data for the eddy current test (ECT) characteristics of IGA. In this paper, the characteristics of eddy current signals are evaluated using nonexpanded tubes with IGA defects formed in 0.1 M sodium tetrathionate solution at $40^{\circ}C$. The detectability and sizing accuracy of IGA were discussed in terms of the coil type and frequency of the ECT probes.

IGA-Based Transmission Loss Minmization considering A New Equality Constraint (새로운 등호제약조건을 고려한 개선된 유전알고리즘 기반의 송전손실 최소화)

  • Chae, Myung-Suk;Lee, Myung-Hwan;Kim, Byung-Seop;Shin, Joong-Rin;Yim, Han-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.104-106
    • /
    • 2000
  • This paper presents an algorithm for optimal reactive power dispatch problem based on Improved Genetic Algorithm(IGA). Optimal Reactive Power Dispatch (ORPD) is particularized to the minimization of transmission line losses by suitable selection of generator reactive power outputs and transformer tap setting. For the objective, in this paper, Loss Re-Distribution Algorithm(LRDA) is new applied to the equality constraint of ORPD. The proposed method has been evaluated on the IEEE 30 bus system. Results of the application of the method are compared with a base case.

  • PDF