• 제목/요약/키워드: IF domain

검색결과 892건 처리시간 0.023초

ON t-ALMOST DEDEKIND GRADED DOMAINS

  • Chang, Gyu Whan;Oh, Dong Yeol
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.1969-1980
    • /
    • 2017
  • Let ${\Gamma}$ be a nonzero torsionless commutative cancellative monoid with quotient group ${\langle}{\Gamma}{\rangle}$, $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be a graded integral domain graded by ${\Gamma}$ such that $R_{{\alpha}}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma},H$ be the set of nonzero homogeneous elements of R, C(f) be the ideal of R generated by the homogeneous components of $f{\in}R$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. In this paper, we introduce the notion of graded t-almost Dedekind domains. We then show that R is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain and RH is a t-almost Dedekind domains. We also show that if $R=D[{\Gamma}]$ is the monoid domain of ${\Gamma}$ over an integral domain D, then R is a graded t-almost Dedekind domain if and only if D and ${\Gamma}$ are t-almost Dedekind, if and only if $R_{N(H)}$ is an almost Dedekind domain. In particular, if ${\langle}{\Gamma}{\rangle}$ isatisfies the ascending chain condition on its cyclic subgroups, then $R=D[{\Gamma}]$ is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain.

A Note on S-Noetherian Domains

  • LIM, JUNG WOOK
    • Kyungpook Mathematical Journal
    • /
    • 제55권3호
    • /
    • pp.507-514
    • /
    • 2015
  • Let D be an integral domain, t be the so-called t-operation on D, and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also investigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring $D[X]_N$ is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring $D[X]_{N_v}$ is a t-locally S-Noetherian domain.

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • 대한수학회지
    • /
    • 제54권6호
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.

A Characterization of Dedekind Domains and ZPI-rings

  • Rostami, Esmaeil
    • Kyungpook Mathematical Journal
    • /
    • 제57권3호
    • /
    • pp.433-439
    • /
    • 2017
  • It is well known that an integral domain D is a Dedekind domain if and only if D is a Noetherian almost Dedekind domain. In this paper, we show that an integral domain D is a Dedekind domain if and only if D is an almost Dedekind domain such that Max(D) is a Noetherian topological space as a subspace of Spec(D) with respect to the Zariski topology. We also give a new characterization of ZPI-rings.

ON ALMOST PSEUDO-VALUATION DOMAINS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제18권2호
    • /
    • pp.185-193
    • /
    • 2010
  • Let D be an integral domain, and let ${\bar{D}}$ be the integral closure of D. We show that if D is an almost pseudo-valuation domain (APVD), then D is a quasi-$Pr{\ddot{u}}fer$ domain if and only if D=P is a quasi-$Pr{\ddot{u}}fer$ domain for each prime ideal P of D, if and only if ${\bar{D}}$ is a valuation domain. We also show that D(X), the Nagata ring of D, is a locally APVD if and only if D is a locally APVD and ${\bar{D}}$ is a $Pr{\ddot{u}}fer$ domain.

t-LINKED OVERRINGS OF A NOETHERIAN DOMAIN

  • Chang, Gyu-Whan
    • Korean Journal of Mathematics
    • /
    • 제7권2호
    • /
    • pp.167-169
    • /
    • 1999
  • Let R be a Noetherian domain. It is proved that $t$-dimR = 1 if and only if each (proper if R is not a valuation domain) $t$-linked overring D of R is of $t$-dimD = 1 if and only if each integrally closed $t$-linked overring of R is a Krull domain.

  • PDF

PULLBACKS OF 𝓒-HEREDITARY DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • 대한수학회보
    • /
    • 제55권4호
    • /
    • pp.1093-1101
    • /
    • 2018
  • Let (RDTF, M) be a Milnor square. In this paper, it is proved that R is a ${\mathcal{C}}$-hereditary domain if and only if both D and T are ${\mathcal{C}}$-hereditary domains; R is an almost perfect domain if and only if D is a field and T is an almost perfect domain; R is a Matlis domain if and only if T is a Matlis domain. Furthermore, to give a negative answer to Lee, s question, we construct a counter example which is a C-hereditary domain R with $w.gl.dim(R)={\infty}$.

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.

THE CLASS GROUP OF D*/U FOR D AN INTEGRAL DOMAIN AND U A GROUP OF UNITS OF D

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제17권2호
    • /
    • pp.189-196
    • /
    • 2009
  • Let D be an integral domain, and let U be a group of units of D. Let $D^*=D-\{0\}$ and ${\Gamma}=D^*/U$ be the commutative cancellative semigroup under aU+bU=abU. We prove that $Cl(D)=Cl({\Gamma})$ and that D is a PvMD (resp., GCD-domain, Mori domain, Krull domain, factorial domain) if and only if ${\Gamma}$ is a PvMS(resp., GCD-semigroup, Mori semigroup, Krull semigroup, factorial semigroup). Let U=U(D) be the group of units of D. We also show that if D is integrally closed, then $D[{\Gamma}]$, the semigroup ring of ${\Gamma}$ over D, is an integrally closed domain with $Cl(D[{\Gamma}])=Cl(D){\oplus}Cl(D)$; hence D is a PvMD (resp., GCD-domain, Krull domain, factorial domain) if and only if $D[{\Gamma}]$ is.

  • PDF

Some Analogues of a Result of Vasconcelos

  • DOBBS, DAVID EARL;SHAPIRO, JAY ALLEN
    • Kyungpook Mathematical Journal
    • /
    • 제55권4호
    • /
    • pp.817-826
    • /
    • 2015
  • Let R be a commutative ring with total quotient ring K. Each monomorphic R-module endomorphism of a cyclic R-module is an isomorphism if and only if R has Krull dimension 0. Each monomorphic R-module endomorphism of R is an isomorphism if and only if R = K. We say that R has property (${\star}$) if for each nonzero element $a{\in}R$, each monomorphic R-module endomorphism of R/Ra is an isomorphism. If R has property (${\star}$), then each nonzero principal prime ideal of R is a maximal ideal, but the converse is false, even for integral domains of Krull dimension 2. An integral domain R has property (${\star}$) if and only if R has no R-sequence of length 2; the "if" assertion fails in general for non-domain rings R. Each treed domain has property (${\star}$), but the converse is false.