• Title/Summary/Keyword: IEEE802.16j

Search Result 51, Processing Time 0.024 seconds

Scenarios and Considerations of IPv6 in IEEE 802.16/WiBro Networks (IEEE 802.16/와이브로 망에서의 IPv6 적용 시나리오 및 네트워크 기술 이슈 분석)

  • Shin, M.K.;Lee, J.C.;Kim, H.J.;Moon, J.M.;Han, Y.H.
    • Electronics and Telecommunications Trends
    • /
    • v.21 no.2 s.98
    • /
    • pp.192-199
    • /
    • 2006
  • 본 고에서는 IEEE 802.16/와이브로 망에서의 IPv6 적용에 따른 시나리오 및 기존IPv6 프로토콜에 대한 네트워크 이슈들을 기술한다. 이를 위해 먼저 IEEE 802.16 망의 특성 및 IPv6 적용에 따른 문제점들을 분석하고, IPv6 적용 가능한 시나리오를 서비스 방법, 시스템 구조, CS 적용 방법, 프리픽스(prefix) 할당 방법에 따라 구분하여 제안한다. 이를 기준으로 IPv6 이웃 탐색(neighbor discovery), IPv6 패킷 전송, 이동성, 멀티캐스트, 보안 프로토콜 등이 어떠한 제한 및 수정이 요구되는지에 대해 기술한다.

Design and Performance Evaluation of Wireless Ad-Hoc Network System based on IEEE 802.16j MMR (IEEE 802.16j MMR 기반 무선 애드 혹 네트워크 시스템 설계 및 성능 평가)

  • Ju, Kwangsung;Chung, Kwangsue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.723-733
    • /
    • 2012
  • In wireless ad hoc networks, packet loss and latency are frequently occurred by movement of node. As the number of transmission hops increases in these networks, the throughput is increasingly deteriorated. In this paper, we design the wireless ad hoc network system based on IEEE 802.16j MMR (Mobile Multi-hop Relay), which improves the network performance. Our wireless ad hoc network system used adaptively the nearest BS and Farthest BS scheduling algorithms for efficient data transmission and chose the optimal path that minimize data loss and latency. In order to evaluate performance of the wireless ad hoc network system based on IEEE 802.16j MMR, we used the LWX (Light Wimax) model of NS-2 simulator. Through the simulation, we analyzed the network performance for various scenarios.

An Effective Coverage Extension Scheme for Trisector Cellular Systems using Multi-hop Relay based on IEEE 802.16j (IEEE 802.16j 기반의 중계기를 도입한 3섹터 셀룰러 시스템에서 효율적인 기지국 커버리지 확장 기법)

  • Yoo, Chang-Jin;Kim, Seung-Yeon;Cho, Choong-Ho;Lee, Hyong-Woo;Ryu, Seung-Wan
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • In this paper, We analysis of effective coverage extension for Tri-sector cellular systems using Multi-hop Relay based on IEEE802.16j system. In the proposed international standard of IEEE 802.16j MMR (Mobile Multi-hop Relay) use of the omni-directional antenna, 3-sector and 6-sector antenna is considered to Base Station and Relay Station. Omni-directional antenna service can offer as all directions but a throughput decreases due to the signal interference of near Relay Stations. In the directional antenna, cause of an interference with the base station which it arranges an antenna so that a beam can have the direct and does with neighbor Base Station and Relay Station can be reduced interference, therefore the effective throughput is higher than the omni-directional antenna system. But, In case of Base Station and Relay Station use the directional antenna, the efficiency which the directional antenna has the Co-channel interference due to in the different cell by the channel reuse is decreased. In this study, we propose the structure of arranging the Base Station and Relay Station having the directional antenna in the NBTC, WBTC antenna in a multi-tier. It compared and analyzed with the mode that the multi-hop Relay Station has the omni-directional antenna, Relay Station are used the NBTC antenna and the WBTC antenna system also, We analyze a relation between the performance degradation and the cell coverage extension which it follows because the number of hop in the multi-hop Relay Station.

Application of Network Coding to IEEE 802.16j Mobile Multi-hop Relay Network for Throughput Enhancement

  • Lee, Kyung-Jun;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.412-421
    • /
    • 2008
  • We observe simultaneous transmission of relay stations (RSs) allowed in current IEEE 802.16j draft standard for multi-hop relay networks may involve severe interference among the RSs, hence leading to throughput degradation. Allowing only 1/3 of the RSs to simultaneously transmit instead of 1/2 RSs as in the current draft standard reduces the interference but results in reduced throughput. To remedy this problem, we devise schemes to incorporate network coding at link-layer level (decode-and-forward) into the simultaneous transmission of RSs. Data movement is rearranged to maximize coding gain. Formula is derived to dictate exact movement of packets traveling between base station (BS) and mobile stations (MSs) via intermediate RSs. The frame structure in the current IEEE 802.16j draft standard does not allow broadcast needed for network coding. We devise a new frame structure which supports the broadcast. A new R-MAP (pointers to the burst data) is introduced to implement the broadcast. Since our new frame structure is used only for BS to RS or RS to RS communication, our schemes retain backward compatibility with legacy MSs based on IEEE 802.16e standard. Simulation based on simple configuration of RSs shows considerable improvement in terms of system throughput and round trip delay. For a 4-hop relay network with 1 BS and 4 RSs with symmetric traffic in uplink (UL) and downlink (DL), throughput is improved by 49% in DL and by 84% in UL traffic compared with IEEE 802.16j draft standard under the assumption that omni-directional antennae are used in BS and RSs.

Improving IPTV Forwarding Masechanism in IEEE 802.16j MMR Networks Based on Aggregation

  • Brahmia, Mohamed-El-Amine;Abouaissa, Abdelhafid;Lorenz, Pascal
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.234-244
    • /
    • 2013
  • Internet protocol television (IPTV) service depends on the network quality of service (QoS) and bandwidth of the broadband service provider. IEEE 802.16j mobile multihop relay Worldwide Interoperability for Microwave Access networks have the opportunity to offer high bandwidth capacity by introducing relay stations. However, to actually satisfy QoS requirements for offering IPTV services (HDTV, SDTV, Web TV, and mobile TV) for heterogeneous users' requests, providers must use a video server for each IPTV service type, which increases the network load, especially bandwidth consumption and forwarding time. In this paper, we present a solution for forwarding IPTV video streaming to diverse subscribers via an 802.16j broadband wireless access network. In particular, we propose a new multicast tree construction and aggregation mechanism based on the unique property of prime numbers. Performance evaluation results show that the proposed scheme reduces both bandwidth consumption and forwarding time.

Joint Bandwidth Allocation and Path Selection Scheme for Uplink Transmission in IEEE 802.16j Networks with Cooperative Relays (협력 중계를 이용한 IEEE 802.16j 네트워크를 위한 상향 링크에서의 통합 대역 할당 및 경로 선택 기법)

  • Hwang, Ho-Young;Lee, Hyuk-Joon;Jeong, In-Gun;Jung, In-Sung;Roh, Bong-Soo;Park, Gui-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.64-77
    • /
    • 2013
  • In this paper, we propose a joint bandwidth allocation and path selection scheme for IEEE 802.16j networks in uplink with cooperative relaying, and we evaluate the performance of the proposed scheme by using OPNET based simulation in hilly terrain with heavy tree density. The proposed scheme maximizes the system throughput in uplink with cooperative relaying in IEEE 802.16j networks. Then, we transform the proposed scheme into multi-dimensional multiple choice knapsack problem (MMKP) based scheme. We also propose uplink throughput maximization scheme and MMKP based scheme without cooperative relaying. We show that the system throughput of the proposed MMKP based scheme is higher than that of link quality based scheme, and cooperative relaying provides higher system throughput than the conventional case without cooperative relaying in uplink.

Relay Performance Analysis of TTR and STR Relay Modes in IEEE 802.16j MMR System

  • Seo, Si-O;Kim, Se-Jin;Kim, Seung-Yeon;Kim, Young-Il;Lee, Hyong-Woo;Ryu, Seung-Wan;Cho, Choong-Ho
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.230-240
    • /
    • 2010
  • The IEEE802.16j standard uses non-transparent relay stations to extend coverage. There are two types of non-transparent relay modes, that is, the time-division transmit and receive (TTR) relay mode which can operate with one of two types of frame structures, a single-frame and multiframe structure, and the simultaneous transmit and receive (STR) relay mode. In this paper, we analyze the relay performance of TTR and STR relay modes in IEEE 802.16j MMR system. We also propose a fair resource allocation scheme for the downlink relay frame. Numerical results show that relay performance of the TTR with a single-frame or a multiframe structure and that of the STR relay modes are almost the same in a two-hop system. However, in a three-hop system, the TTR mode with a single-frame structure outperforms other relay modes.

A Study on the Optimal Wireless Resource Allocation for the Access and Relay Zones of Downlink in a 2-hop Cellular Relay System based on IEEE802.16j (IEEE802.16j 기반의 2-홉 셀룰러 중계시스템에서 하향링크 접근영역과 중계영역에 대한 최적 무선자원 할당방법 연구)

  • Lee, In-Hwan;Kim, Se-Jin;Cho, Sung-Ho
    • Journal of Internet Computing and Services
    • /
    • v.11 no.3
    • /
    • pp.43-51
    • /
    • 2010
  • In this paper, we evaluate the system throughput and the method of optimal wireless resource allocation for the access zone (AZ) and relay zone (RZ) in downlink when the cell coverage is extended using the non-transparent Relay Station (RS) in a 2-hop cellular relay system based on IEEE802.16j, which uses the OFDMA-TDD structure. For the analyses, we first introduce the MAC (Media Access Control) frame structure in the non-transparent mode, then we investigate the interfering elements in both AZ and RZ for the network devices such as the Mobile Station (MS) and RS. Through computer simulation, we analyze the cell coverage extension and system throughput in terms of the distance between Base Station (BS) and RS, then we present the amount of the optimal allocation of wireless resource for the AZ and RZ in downlink using our results.

Seamless Intra MR-BS Handover Based on IEEE802.16j (IEEE802.16j MR-BS내에서 끊김없는 핸드오버 기술)

  • Lee, Il-Shin;Yoo, Jae-Ho;Lee, Yoon-Ju;Kwon, Dong-Seung;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.381-390
    • /
    • 2009
  • In this paper, we propose a seamless intra MR-BS handover scheme based on IEEE802.16j transparent. The proposed scheme estimates the outage probability of mobile stations at a base station, finds the optimum relay user, and provides low handover latency for seamless data transmission. The simulation results show that the proposed scheme outperforms the conventional handover schemes in terms of the handover latency by 65% of conventional scheme. Moreover, the proposed scheme exhibits lower packet error rate compared with the conventional handover scheme when a mobile station moves to outside of the cell coverage and reduce both outage probability and the number of handover about 50% from setting forgetting factor and redundant threshold.

Performance Analysis of Single-frame Mode and Multi-Frame Mode in IEEE802.16j MMR System (IEEE802.16j MMR 시스템에서 Single-Frame 방식과 Multi-Frame 방식의 성능 분석)

  • Kim, Seung-Yeon;Kim, Se-Jin;Yoo, Chang-Jin;Ryu, Seung-Wan;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6B
    • /
    • pp.403-410
    • /
    • 2008
  • In this paper, we investigate the performance of MMR system in Non-transparent mode. The IEEE 802.16j MMR system has two node of operation, Single-frame (in band) and Multi-frame (out band) mode. In the analysis, we assume that channel interference between MR-BS and RS, or between RSs anywhere in the given area is ignored. The performance is presented in terms of the delay and the frame efficiency by varying number of RS and BS coverage to RS coverage ratio and the maximum coverage area of a BS by varying traffic density. Analytical results show that the Single-frame is more efficient than Multi-frame in frame efficiency and coverage extension.