• Title/Summary/Keyword: IEEE802.11n

Search Result 139, Processing Time 0.027 seconds

Channel Estimation Scheme for WLAN Systems with Backward Compatibility

  • Kim, Jee-Hoon;Yu, Hee-Jung;Lee, Sok-Kyu
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.450-453
    • /
    • 2012
  • IEEE 802.11n standards introduced a mixed-mode format frame structure to achieve higher throughput with multiple antennas while providing backward compatibility with legacy systems. Although multi-input multi-output channel estimation was possible only with high-throughput long training fields (HT-LTFs), the proposed scheme utilizes a legacy LTF as well as HT-LTFs in a decision feedback manner to improve the accuracy of the estimates. It was verified through theoretical analysis and simulations that the proposed scheme effectively enhances the mean square error performance.

A Wireless AV (Audio/Video) Network System Design & Implementation In Vehicle (차량 내 무선 AV 네트워크 시스템 설계 및 구현)

  • Susang Yoo;Jinoo Joung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.824-827
    • /
    • 2008
  • 차량 내 유선 AV 시스템의 무선화 과정에서 필요한 시스템의 동작을 명세하고, 설계하며, AV 스트림의 동기화 방법을 연구하여 이를 시스템에 적용한다. 또한 차량 무선 AV 네트워크로써 IEEE 802.11n 표준을 사용하고, 그 적합성 여부를 확인하기 위해 설계한 시스템의 요구 대역폭을 분석한다. 이밖에 향후 추진과제에 대해 언급함으로써 본 연구의 전체적인 작업 흐름과 의의에 대해 언급한다.

Design of Baseband Analog Chain with Optimum Allocation of Gain and Filter Rejection for WLAN Applications

  • Cha, Min-Yeon;Kwon, Ick-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.309-317
    • /
    • 2011
  • This paper describes a baseband analog (BBA) chain for wireless local area network (WLAN) applications. For the given specifications of the receiver BBA chain, the optimum allocation of the gain and filter rejection of each block in a BBA chain is achieved to maximize the SFDR. The fully integrated BBA chain is fabricated in 0.13 ${\mu}m$ CMOS technology. An input-referred third-order intercept point (IIP3) of 22.9 dBm at a gain of 0.5 dB and an input-referred noise voltage (IRN) of 32.2 nV/${\surd}$Hz at a gain of 63.3 dB are obtained. By optimizing the allocation of the gain and filter rejection using the proposed design methodology, an excellent SFDR performance of 63.9 dB is achieved with a power consumption of 12 mW.

Indoor Localization based on Multiple Neural Networks (다중 인공신경망 기반의 실내 위치 추정 기법)

  • Sohn, Insoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.378-384
    • /
    • 2015
  • Indoor localization is becoming one of the most important technologies for smart mobile applications with different requirements from conventional outdoor location estimation algorithms. Fingerprinting location estimation techniques based on neural networks have gained increasing attention from academia due to their good generalization properties. In this paper, we propose a novel location estimation algorithm based on an ensemble of multiple neural networks. The neural network ensemble has drawn much attention in various areas where one neural network fails to resolve and classify the given data due to its' inaccuracy, incompleteness, and ambiguity. To the best of our knowledge, this work is the first to enhance the location estimation accuracy in indoor wireless environments based on a neural network ensemble using fingerprinting training data. To evaluate the effectiveness of our proposed location estimation method, we conduct the numerical experiments using the TGn channel model that was developed by the 802.11n task group for evaluating high capacity WLAN technologies in indoor environments with multiple transmit and multiple receive antennas. The numerical results show that the proposed method based on the NNE technique outperforms the conventional methods and achieves very accurate estimation results even in environments with a low number of APs.

A Symbol Synchronization Detection by Difference Method for OFDM Systems (차분방법에 의한 OFDM 심볼 동기검출 방식)

  • Joo Chang-Bok;Park Nam-Chun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.2 s.344
    • /
    • pp.56-65
    • /
    • 2006
  • In this paper, we introduce modified difference type symbol timing detection method of simple structure and show the relations between S/N ratio and timing detection performance which less influenced by multipath channel delay profile and added noise level and it show very exact GI detection performance characteristics. In the computer simulations, 4 symbol time duration of short and long training of IEEE802.11a standard OFDM frame are used for symbol synchronization timing detection. The computer simulation results show the very exact symbol timing detection performance characteristic within 1 sample error of OFDM signal regardless channel delay profile from minimn phase channels of phase rotation ${\pi}/2$ to non-minimum phase channels of phase rotation ${\pi}/2$ of received OFDM signal and added noise level in channel.

A High-Speed Low-Complexity 128/64-point $Radix-2^4$ FFT Processor for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 고속 저면적 128/64-point $Radix-2^4$ FFT 프로세서 설계)

  • Hang, Liu;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.15-23
    • /
    • 2009
  • This paper presents a novel high-speed, low-complexity flexible 128/64-point $radix-2^4$ FFT/IFFT processor for the applications in high-throughput MIMO-OFDM systems. The high radix multi-path delay feed-back (MDF) FFT architecture provides a higher throughput rate and low hardware complexity by using a four-parallel data-path scheme. The proposed processor not only supports the operation of FFT/IFFT in 128-point and 64-point but can also provide a high data processing rate by using a four-parallel data-path scheme. Furthermore, the proposed design has a less hardware complexity compared with traditional 128/64-point FFT/IFFT processors. Our proposed processor has a high throughput rate of up to 560Msample/s at 140MHz while requiring much smaller hardware expenditure satisfying IEEE 802.11n standard requirements.

Design and Fabrication of a Dual-Band Bandpass Filter Using a Dual-Mode Ring Resonator with Two Short-Circuited Stubs for WLAN Application (두 단락 스터브를 갖는 이중 모드 링 공진기를 이용한 WLAN용 이중대역 대역통과 여파기의 설계 및 제작)

  • Choi, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.814-820
    • /
    • 2015
  • In this paper, A high selective dual-band bandpass filter was proposed using a dual-mode ring resonator with two short-circuited stubs. For dual-mode resonance, the ring resonator is directly connected with non-orthogonal feed-lines via coupling capacitors. Two short-circuited stubs which are unequal lengths are simultaneously placed at two corners along the two symmetry plane of the ring resonator in order to obtain dual-band responses. Because the feeding angle perturbated ring resonator of the proposed dual-band bandpass filter has the symmetrical structure, Even/Odd mode analysis can be well applied to extract the scattering parameters and transmission zero frequencies. The proposed dual-band bandpass filter was designed and fabricated for WLAN(Wireless Local Area Network) application of IEEE 802.11n standard. The measured results showed a good agreement with the simulation results, and it should be well applied not only for WLAN applications but also for any other communication systems.

A Study on dual-band Wilkinson power divider with ${\pi}$-shaped parallel stub transmission lines for WLAN (${\pi}$-형 병렬 스터브 전송선로를 이용한 WLAN용 이중대역 Wilkinson 전력 분배기에 대한 연구)

  • Jo, Won-Geun;Kim, Dong-Seek;Ha, Dong-Ik;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.105-112
    • /
    • 2010
  • Recently, wireless communication systems have been developed and the circuits which operate with the broad-band for multiband uses were introduced. However, broad-band circuits have problems that inevitably increase the size. Dual-band circuit operates only two frequency, therefore, it will be able to miniaturize through unnecessary decreased elements. The Wilkinson power divider is the one of the most commonly used components in wireless communication system for power division. Nowaday, the Wilkinson power divider is also demanded dual-band. In this paper, I propose miniaturized dual-band Wilkinson power divider operating at 2.45 GHz and 5.2 GHz for IEEE 802.11n standard. Proposed dual-band Wilkinson power divider is used in parallel stub line. The design is accomplished by transforming the electrical length and impedance of the quarter wave sections of the conventional Wilkinson power divider into dual band ${\pi}$-shaped sections.

Indoor Wi-Fi Localization with LOS/NLOS Determination Scheme Using Dual-Band AP (이중대역 AP를 이용한 LOS/NLOS 판별 및 실내 위치 측위 기술)

  • Kim, Kangho;Lee, Suk Kyu;Jung, Jongtack;Yoo, Seungho;Kim, Hwangnam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1643-1654
    • /
    • 2015
  • With standardization of IEEE 802.11n, APs with the 2.4GHz and 5GHz dual-band capability have widely been deployed over a metropolitan area by individuals and internet service providers. Moreover, due to the increasing attentions on indoor-localization technique using Wi-Fi, the need for LOS and NLOS determination scheme is increasing to enhance accuracy of the localization. In this paper, we propose a novel LOS/NLOS determination technique by using different radio attenuation characteristics in different frequency bands and different mediums. Based on this technique, we designed a LOS/NLOS-aware indoor localization scheme. The proposed LOS/NLOS determination algorithm can be used when the distance between an user device and an AP is unknown, and the proposed localization scheme provides very accurate room-level position information. We validated the proposed scheme by implementing it on Android smart phones.

Projection of Spatial Correlation-Based Antenna Selection for Cognitive Radio Systems in Correlated Channels (인지무선 시스템의 상관채널에서 공간 상관 행렬 사영을 이용한 안테나 선택기법)

  • Cho, Jae-Bum;Jang, Sung-Jeen;Jung, Won-Sik;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.8-16
    • /
    • 2012
  • Recent work has been shown that cognitive radio systems with multiple antenna at both transmitter and receiver are able to improve performance of secondary users. In such system, the main drawback is the increased complexity and raised cost as the number of antennas increase. It is desirable to apply antenna selection which select a subset of the available antennas so as to solve these problems. In this paper, we consider antenna selection method for cognitive radio systems in correlated channel from the IEEE 802.11n. For a multiple-input multiple-output(MIMO) system with more antennas at transmitter than the receiver, we select the same number of transmit antennas as that of receive antennas. The exhaustive search for optimal antenna becomes impractical. We present criterion for selecting subset in terms of projection of channel correlation vector to increase performance of secondary user with decreasing interference at primary user.