• Title/Summary/Keyword: IEEE802.11a

Search Result 1,113, Processing Time 0.037 seconds

A Robotcar-based Proof of Concept Model System for Dilemma Zone Decision Support Service (딜레마구간 의사결정 지원 서비스를 위한 로봇카 기반의 개념검증 모형 시스템)

  • Lee, Hyukjoon;Chung, Young-Uk;Lee, Hyungkeun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.4
    • /
    • pp.57-62
    • /
    • 2014
  • Recently, research activities to develop services for providing safety information to the drivers in fast moving vehicles based on various wireless network technologies such as DSRC (Dedicated Short Range Communication), IEEE 802.11p WAVE (Wireless Access for Vehicular Environment) are widely being carried out. This paper presents a proof-of-concept model based on a robot-car for Dilemma Zone Decision Assistant Service using the wireless LAN technology. The proposed model system consists of a robot-car based on an embedded Linux OS equipped with a WiFi interface and an on-board unit emulator, an Android-based remote controller to model a human driver interface, a laptop computer to run a model traffic signal controller and signal lights, and a WiFi access point to model a road-side unit.

Frequency-Code Domain Contention in Multi-antenna Multicarrier Wireless Networks

  • Lv, Shaohe;Zhang, Yiwei;Li, Wen;Lu, Yong;Dong, Xuan;Wang, Xiaodong;Zhou, Xingming
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.218-226
    • /
    • 2016
  • Coordination among users is an inevitable but time-consuming operation in wireless networks. It severely limit the system performance when the data rate is high. We present FC-MAC, a novel MAC protocol that can complete a contention within one contention slot over a joint frequency-code domain. When a node takes part in the contention, it generates randomly a contention vector (CV), which is a binary sequence of length equal to the number of available orthogonal frequency division multiplexing (OFDM) subcarriers. In FC-MAC, different user is assigned with a distinct signature (i.e., PN sequence). A node sends the signature at specific subcarriers and uses the sequence of the ON/OFF states of all subcarriers to indicate the chosen CV. Meanwhile, every node uses the redundant antennas to detect the CVs of other nodes. The node with the minimum CV becomes the winner. The experimental results show that, the collision probability of FC-MAC is as low as 0.05% when the network has 100 nodes. In comparison with IEEE 802.11, contention time is reduced by 50-80% and the throughput gain is up to 200%.

Investigation and Testing of Location Systems Using WiFi in Indoor Environments

  • Retscher, Guenther;Mok, Esmond
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.83-88
    • /
    • 2006
  • Many applications in the area of location-based services and personal navigation require nowadays the location determination of a user not only in outdoor environment but also indoor. To locate a person or object in a building, systems that use either infrared, ultrasonic or radio signals, and visible light for optical tracking have been developed. The use of WiFi for location determination has the advantage that no transmitters or receivers have to be installed in the building like in the case of infrared and ultrasonic based location systems. WiFi positioning technology adopts IEEE802.11x standard, by observing the radio signals from access points installed inside a building. These access points can be found nowadays in our daily environment, e.g. in many office buildings, public spaces and in urban areas. The principle of operation of location determination using WiFi signals is based on the measurement of the signal strengths to the surrounding available access points at a mobile terminal (e.g. PDA, notebook PC). An estimate of the location of the terminal is then obtained on the basis of these measurements and a signal propagation model inside the building. The signal propagation model can be obtained using simulations or with prior calibration measurements at known locations in an offline phase. The most common location determination approach is based on signal propagation patterns, namely WiFi fingerprinting. In this paper the underlying technology is briefly reviewed followed by an investigation of two WiFi positioning systems. Testing of the system is performed in two localization test beds, one at the Vienna University of Technology and the second at the Hong Kong Polytechnic University. First test showed that the trajectory of a moving user could be obtained with a standard deviation of about ${\pm}$ 3 m.

  • PDF

Scenario and Network Performance Evaluation for A Do Not Pass Warning Service Based on Vehicle-to-Vehicle Communications (차량 간 통신 기반 추월보조 서비스를 위한 시나리오 및 네트워크 성능 평가)

  • Seo, Hyun-Soo;Jung, Jin-Su;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.227-232
    • /
    • 2013
  • Due to the development of ITS technology, various services related to transportation under vehicular environments have been provided. Especially, as wireless communication technology, WAVE has been established as a standard for vehicle-to-vehicle communications. WAVE has fast connection and excellent mobility characteristics. A VSC-A project is conducting by global automotive OEMs in USDOT. This project introduces the advanced safety services with vehicle-to-vehicle communications. In this paper, we presented the scenario of a do not pass warning service, which prevents an accident during overtaking activity by using vehicle-to-vehicle communications. In addition, we analyzed network performance under WAVE. In conclusion, we introduced the simulation results. Finally, we summarized the communication range and delay values for consideration factors for a overtaking model.

Adaptive Packet Scheduling Scheme for Enhancing the PSM Performance of Mobile Devices (모바일 단말의 PSM 성능 향상을 위한 적응적 패킷 스케줄링 기법)

  • Park, Young Deok;Jung, Kyoung-Hak;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.8
    • /
    • pp.623-631
    • /
    • 2013
  • Wireless LAN (WLAN) interface is one of the major sources drastically depleting the battery power of mobile devices such as smartphones and tablets. Most commercial mobile devices employ a power saving technique putting their WLAN interface into a sleep state when there is no network traffic, and thereby, save the battery power. However, since an access point (AP) just transmits the packet(s) received from a server to the corresponding mobile device immediately, it may cause a problem that the mobile device constantly remains in an awake state so that its battery power is rapidly drained. In this paper, we point out this problem and propose a new scheme that can save the mobile device's battery power with an adaptive packet scheduling at the AP side. From the experimental results based on a testbed, we found that the proposed scheme outperforms existing schemes over 50% in terms of power saving.

A Distributed Dynamic Address Assignment for Tactical Mobile Ad-hoc Networks (전술 MANET에서 그룹 단위 분산된 동적 주소 할당 기법)

  • Park, Mun-Young;Lee, Jong-Kwan;Baek, Ho-Ki;Kim, Du-Hwan;Lim, Jae-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.327-335
    • /
    • 2014
  • In this paper, we propose a group distributed dynamic address assignment scheme suitable for tactical mobile ad hoc networks(MANET). Efficient address assignment is an important issue in the MANET because a node may frequently leave the current network and join another network owing to the mobility of the node. The conventional schemes do not consider the features of the tactical networks: existence of a leader node and network activity on a group basis. Thus, they may not be suitable for military operations. In our proposed scheme, called grouped units dynamic address assignment protocol(G-DAAP), a leader node maintains the address information for the members in the network and any of the nodes can exploit the information for the assignment or request of the IP address by a simple message exchange procedure. This leads to fast address assignment with small overheads. In addition, G-DAAP based on the modified IEEE 802.11e Enhanced Distributed Channel Access(EDCA) can assign addresses more quickly. We describe the delay performance of the G-DAAP and compare it with conventional schemes by numerical analysis and computer simulations. The results show that the G-DAAP significantly improves the delay performance as compared with the conventional schemes.

Cluster Label-based ZigBee Mesh Routing Protocol (클러스터 라벨 기반의 지그비 메쉬 라우팅 프로토콜)

  • Lee, Kwang-Koog;Kim, Seong-Hoon;Park, Hong-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1164-1172
    • /
    • 2007
  • To solve scalability problem in the ZigBee Network, this paper presents a new mesh routing protocol for ZigBee, called ZigBee Cluster Label (ZiCL). ZiCL divides the ZigBee network into one or more logical clusters and then assigns a unique Cluster Label to each cluster so that it discovers a route of a destination node based on Cluster Label. When a node collects new Cluster Label information of a destination node according to discovery based on Cluster Label, ZiCL encourages nodes with the same Cluster Label to share the information. Consequen tly, it contributes on reducing numerical potential route discoveries and improving network performances such as routing overhead, end-to-end delay, and packet delivery ratio. Simulation results using NS-2 show ZiCL performs well.

A Small Monopole Antenna with Novel Impedance Matching Structure (새로운 임피던스 매칭 구조를 가지는 소형 모노폴 안테나)

  • Kim, Dong-Jin;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.828-833
    • /
    • 2007
  • A small monopole antenna with a novel impedance matching structure is proposed in this paper. The proposed antenna is designed for W-LAN(IEEE 802.11b). The antenna design concept is based on a ${\lambda}/8$ folded monopole antenna with a self-impedance matching structure. The size of the proposed antenna is smaller than the resonant length, thus the impedance at the terminal of the antenna becomes very capacitive. To compensate fur this impedance mismatching, the proposed antenna employs a novel self-impedance matching structure. The self-impedance matching structure is located on the top of the antenna; it improves the impedance matching and ultimately the efficiency of the antenna. The measured results of the proposed antenna show reasonable agreement with prediction.

Analytical Model of Isochronous MAC Protocol for MANET (모바일 애드혹 네트워크를 위한 Isochronous MAC 프로토콜의 분석적 모델 연구)

  • Heo, Ung;Choi, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.111-118
    • /
    • 2008
  • In this paper a novel medium access control mechanism is investigated as a means to support real-time services. The primary goal is to provide constant-bit-rate voice call services to pairs of autonomous mobile nodes operating in ad hoc networks. Here, a time-slot reservation based MAC is considered to provide real-time voice calls and a new MAC called the time-slot reservation coordination function(TRCF) is presented. In addition to this isochronous type MAC protocol development, the proposed protocol is modeled using a Markov chain in order to predict its behavior. The performance of TRCF is analytically derived and the performance measures such as average wait time taken for a call connection and throughput are obtained.

V-Band Power Amplifier MMIC with Excellent Gain-Flatness (광대역의 우수한 이득평탄도를 갖는 V-밴드 전력증폭기 MMIC)

  • Chang, Woo-Jin;Ji, Hong-Gu;Lim, Jong-Won;Ahn, Ho-Kyun;Kim, Hae-Cheon;Oh, Seung-Hyueb
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.623-624
    • /
    • 2006
  • In this paper, we introduce the design and fabrication of V-band power amplifier MMIC with excellent gain-flatness for IEEE 802.15.3c WPAN system. The V-band power amplifier was designed using ETRI' $0.12{\mu}m$ PHEMT process. The PHEMT shows a peak transconductance ($G_{m,peak}$) of 500 mS/mm, a threshold voltage of -1.2 V, and a drain saturation current of 49 mA for 2 fingers and $100{\mu}m$ total gate width (2f100) at $V_{ds}$=2 V. The RF characteristics of the PHEMT show a cutoff frequency, $f_T$, of 97 GHz, and a maximum oscillation frequency, $f_{max}$, of 166 GHz. The gains of the each stages of the amplifier were modified to have broadband characteristics of input/output matching for first and fourth stages and get more gains of edge regions of operating frequency range for second and third stages in order to make the gain-flatness of the amplifier excellently for wide band. The performances of the fabricated 60 GHz power amplifier MMIC are operating frequency of $56.25{\sim}62.25\;GHz$, bandwidth of 6 GHz, small signal gain ($S_{21}$) of $16.5{\sim}17.2\;dB$, gain flatness of 0.7 dB, an input reflection coefficient ($S_{11}$) of $-16{\sim}-9\;dB$, output reflection coefficient ($S_{22}$) of $-16{\sim}-4\;dB$ and output power ($P_{out}$) of 13 dBm. The chip size of the amplifier MMIC was $3.7{\times}1.4mm^2$.

  • PDF