• Title/Summary/Keyword: IEEE1609.2

Search Result 17, Processing Time 0.023 seconds

Design and Implementation of IEEE Std 1609.2 Message Encoder/Decoder for Vehicular Communication Security (자동차 통신 보안을 위한 IEEE Std 1609.2 메시지 인코더/디코더의 설계 및 구현에 관한 연구)

  • Seo, Hye-In;Kim, Eun-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.568-577
    • /
    • 2017
  • IEEE Std 1609.2 was defined for the support of communication security functions in the WAVE (Wireless Access in Vehicular Environments) system. IEEE Std 1609.2 defined the message structures of the security services and managements on the vehicular communication by using ASN.1 (Abstract Syntax Notation One). Also, this security message structures shall be encoded using the COER (Canonical Octet Encoding Rules). In this paper, we designed and implemented the IEEE Std 1609.2 message encoder/decoder handling the security messages defined in IEEE Std 1609.2. The designed encoder/decoder consists of three modules as follows : a module generating the message of C language data structures in accord with IEEE Std 1609.2 message structures, a message encoder module, a message decoder module. And the encoder/decoder was implemented on the Linux environment. Also we analyzed the performance by measuring the performance speed of the encoder/decoder implemented.

Design and Implementation of an IEEE WAVE Multi-channel Transmission Emulator (IEEE WAVE 멀티채널 전송 에뮬레이터의 설계 및 구현)

  • Lee Woo-Sin;Lee Hyuk-Joon;Lee Sang-Lock;Lee Won-Gi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.3 s.8
    • /
    • pp.1-8
    • /
    • 2005
  • IEEE WAVE(Wireless Access in Vehicular Environment) is being developed to operate in 5 GHz DSRC band to provide cars moving at high-speed with vehicle-to-vehicle and vehicle-to-roadside communication. IEEE P 1609.3 of the WAVE protocol stack defines how multiple channels are used based on the exchange of provider-service-tables (PST) and user-service-tables (UST) for rapid link establishment and data transmission. This paper presents the design and implementation of an IEEE WAVE multi-channel transmission emulator that we have developed to study the operation of protocol and applications. Applications for a public-safety and a download service have been implemented and are shown to operate effectively on top of the emulator.

  • PDF

Efficient FPGA Implementation of AES-CCM for IEEE 1609.2 Vehicle Communications Security

  • Jeong, Chanbok;Kim, Youngmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Vehicles have increasingly evolved and become intelligent with convergence of information and communications technologies (ICT). Vehicle communications (VC) has become one of the major necessities for intelligent vehicles. However, VC suffers from serious security problems that hinder its commercialization. Hence, the IEEE 1609 Wireless Access Vehicular Environment (WAVE) protocol defines a security service for VC. This service includes Advanced Encryption Standard-Counter with CBC-MAC (AES-CCM) for data encryption in VC. A high-speed AES-CCM crypto module is necessary, because VC requires a fast communication rate between vehicles. In this study, we propose and implement an efficient AES-CCM hardware architecture for high-speed VC. First, we propose a 32-bit substitution table (S_Box) to reduce the AES module latency. Second, we employ key box register files to save key expansion results. Third, we save the input and processed data to internal register files for secure encryption and to secure data from external attacks. Finally, we design a parallel architecture for both cipher block chaining message authentication code (CBC-MAC) and the counter module in AES-CCM to improve performance. For implementation of the field programmable gate array (FPGA) hardware, we use a Xilinx Virtex-5 FPGA chip. The entire operation of the AES-CCM module is validated by timing simulations in Xilinx ISE at a speed of 166.2 MHz.

Programming and Verification of WAVE Multi-Channel Simulation Program based on the ns-2 (ns-2 기반 WAVE 멀티채널 시뮬레이션 프로그램 작성 및 검증)

  • Kang, Woo-Sung;Jung, Jin-Uk;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1471-1478
    • /
    • 2011
  • A typical standard of vehicular ad hoc networks, WAVE which consists of IEEE 1609.x Family standards and IEEE 802.11p standard, includes the multi-channel coordination and channel synchronization function to provide safety services or public services during a car is driven. Generally, the performance of data communication and networking technologies is evaluated by using simulation tools, such as ns-2, OPNET, OPNET++, etc. However, these tools doesn't provide the operations of WAVE protocol. Therefore, in this paper, we implement and verify WAVE simulation program based on ns-2.

The Efficient AES-CCM Architecture for a hardware library in the WAVE (WAVE 하드웨어 암호 라이브러리에 적합한 효율적인 AES-CCM 구조 설계)

  • Lee, Yeon-Cheol;Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2899-2905
    • /
    • 2013
  • According to developing wireless communications in vehicle, various security threat in the WAVE(Wireless access in vehicular environments) is increased. To protect this, IEEE 1609.2 specify services as for prevent message from attacks such as spoofing, eavesdropping and replay. It is possible to implement a hardware library for defending these attacks. In this paper, we proposed a efficient AES-CCM architecture for the hardware library in the WAVE. We compare our architecture to the previous one in the same FPGA. And our design uses less slices than 27 % of it and less slices than 45 % of it if we share registers that were used by other modules in the library. We also achieves a throughput of 1355 Gbits/s in xc5vlx110t-2ff1136.

Performance Evaluation of IEEE 802.11p Based WAVE Communication Systems at MAC Layer (MAC 계층에서의 IEEE 802.11p 기반 WAVE 통신 시스템의 성능 평가)

  • Choi, Kwang Joo;Kim, Jin Kwan;Park, Sang Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.526-531
    • /
    • 2014
  • Vehicular communications have been receiving much attention in intelligent transport systems(ITS) by combining communication technology with automobile industries. In general, vehicular communication can be used for vehicle-to-vehicle(V2V) and vehicle-to-infrastructure( V2I) communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environment(WAVE). WAVE system transmits signal in 5.835~5.925 GHz frequency band with orthogonal frequency division multiplexing(OFDM) signaling. In this paper, after 32 bit processed the channel monitoring in MAC(Media Access Control) layer of WAVE system implemented according to IEEE 802.11p standard, data were received and we evaluated the performance, we built the test bed consisting of OBU(On Board Unit) in the real expressway. We transmitted WSM(WAVE Short Message) and received WSM between OBU wirelessly. And then, we calculated channel occupancy time per one frame and throughput, and evaluated the performance.

A study on the Analysis of Radio Characteristics about Communication Mode in a Road (공용도로에서의 통신방식에 대한 전파특성 분석 연구)

  • Choi, Gi-Do;Lim, Ki-Taek;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2016
  • Vehicular communications is system which can be applied for transmission of various safety messages or Intelligent Transportation Systems(ITS) applications by combining vehicle/road technology with Information and Communication Technology(ICT). In recent years, a variety of ITS services are available such as driving information, road conditions, V2X messages as well as navigation and traffic jams notification. In general, vehicular communications can be used for vehicle-to-vehicle and vehicle-to-infrastructure communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments. In this paper, WAVE communication standard based on the IEEE802.11p is explained and signal characteristics in WAVE communication is introduced. Also, The H/W and S/W characteristics in Road Side Station and On Board Equipment for the Vehicle to Everything communication are analyzed. Received Signal Strength which is power of receiving signal of communication equipment is measured in test road to estimate the real WAVE communication's performance. It is shown that the implemented WAVE communication technology is satisfactory to provide ITS services.

Physical Layer Issues in Vehicular Communications (차량통신에서의 물리계층 이슈)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1229-1234
    • /
    • 2012
  • Vehicular communications have been receiving much attention in intelligent transport systems (ITS) by combining communication technology with automobile industries. In general, vehicular communications can be used for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments (WAVE). WAVE system transmits signal in 5.9GHz frequency band with orthogonal frequency division multiplexing (OFDM) signaling. In this paper, we consider physical layer issues in vehicular communications. We first overview the physical (PHY) layer of WAVE standard and properties of 5.9GHz signals, and then physical layer issues to provide reliable communication link are discussed.

V2X 통신을 위한 보안기술

  • Lee, You Sik;Kim, Duk Soo;Sim, Sang Gyoo
    • Review of KIISC
    • /
    • v.24 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • 차량간 소통을 통하여 사고를 미연에 방지하고, 운전자의 편의성을 높일 수 있는 V2X는 차세대 자동차 기술 중 하나로 인식되어, 주요 자동차 생산 업체는 물론 미국이나 유럽의 경우 국가적인 차원에서 관심을 가지고 연구 및 기술개발에 힘쓰고 있는 기술이다. 본 고에서는 IEEE 1609.2를 중심으로 V2X 통신 중 보안부분(Security Service)에 대한 설명과 차량을 위한 PKI 시스템 구축 등을 소개하고, 향후 연구 방향에 대하여 논한다.

Software Implementation of WAVE Security Algorithms (WAVE 보안 알고리즘의 소프트웨어 구현)

  • Kang, Jung-Ha;Ok, Sung-Jin;Kim, Jae Young;Kim, Eun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1691-1699
    • /
    • 2014
  • IEEE developing WAVE specifications are able to support V2V and V2I wireless communications, and these functionalities can be used to enhance vehicle operational safety. To overcome any security weaknesses that are inherent in wireless communications, WAVE specification should support message encryption and authentication functions. In this study, we have implemented WAVE security algorithms in IEEE P1609.2 with openssl library and C language. We have verified the normal operation of implemented software, using the test vectors of related specifications, and measured their performance. Our software is platform independent, and can be used for the full implementation of WAVE specification.