• Title/Summary/Keyword: IEEE 802.22 wireless regional area networks (WRAN)

Search Result 2, Processing Time 0.017 seconds

Policy-based Dynamic Channel Selection Architecture for Cognitive Radio Network (무선인지 기술 기반의 정책에 따른 동적 채널 선택 구조)

  • Na, Do-Hyun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.358-366
    • /
    • 2007
  • Recently, FCC(Federal Communications Commission) has considered for that unlicensed device leases licensed devices' channel to overcome shortage of communication channels. Therefore, IEEE 802.22 WRAN(Wireless Regional Area Networks) working group progresses CR (Cognitive Radio) technique that is able to sense and adopt void channels that are not being occupied by the licensed devices. Channel selection is of the utmost importance because it can affect the whole system performance in CR network. Thus, we propose a policy-based dynamic channel selection architecture for cognitive radio network to achieve an efficient communication. We propose three kinds of method for channel selection; the first one is weighted channel selection, the second one is sequential channel selection, and the last one is combined channel selection. We can obtain the optimum channel list and allocates channels dynamically using the proposed protocol.

ATSC Digital Television Signal Detection with Spectral Correlation Density

  • Yoo, Do-Sik;Lim, Jongtae;Kang, Min-Hong
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.600-612
    • /
    • 2014
  • In this paper, we consider the problem of spectrum sensing for advanced television systems committee (ATSC) digital television (DTV) signal detection. To exploit the cyclostationarity of the ATSC DTV signals, we employ spectral correlation density (SCD) as the decision statistic and propose an optimal detection algorithm. The major difficulty is in obtaining the probability distribution functions of the SCD. To overcome the difficulty, we probabilistically model the pilot frequency location and employ Gaussian approximation for the SCD distribution. Then, we obtain a practically implementable detection algorithm that outperforms the industry leading systems by 2-3 dB. We also propose various techniques that greatly reduce the system complexity with performance degradation by only a few tenths of decibels. Finally, we show how robust the system is to the estimation errors of the noise power spectral density level and the probability distribution of the pilot frequency location.