• Title/Summary/Keyword: IEEE 802.15.6 WBAN

Search Result 51, Processing Time 0.02 seconds

Performance Evaluation of Multi-Hop Transmissions in IEEE 802.15.6 UWB WBAN (IEEE 802.15.6 UWB WBAN에서 다중 홉 전송에 대한 성능 평가)

  • Kim, Ho-Sung;Hwang, Ho Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1313-1319
    • /
    • 2017
  • In this paper, we evaluate the performance of multi-hop transmissions in IEEE 802.15.6 ultra wide band (UWB) wireless body area network (WBAN). The packet structure in the physical layer, and encoding and decoding are considered for multi-hop transmissions in IEEE 802.15.6 UWB WBAN. We analyze the data success rate and energy efficiency of multi-hop transmissions with considering the length of data payload, transmission power, and distances between the nodes in IEEE 802.15.6 UWB WBAN. Through simulations, we evaluate the data success rate and energy efficiency of multi-hop transmissions with varying the length of data payload, transmission power, and distances between the nodes in IEEE 802.15.6 UWB WBAN. Finally, we can select an energy-efficient multi-hop transmission in IEEE 802.15.6 UWB WBAN depending on the length of data payload, transmission power, and distances between the nodes.

Differentiated QoS Provisioning of WBAN Traffic in WUSB Services based on IEEE 802.15.6 (IEEE 802.15.6 표준 기반 무선 USB 서비스의 차등화된 WBAN 트래픽 QoS 제공 방안)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1087-1095
    • /
    • 2014
  • A recent major development in computer technology is the advent of the wearable computer system that is based on human-centric interface technology trends and ubiquitous computing environments. Wearable computer systems can use the wireless universal serial bus (WUSB) that refers to USB technology that is merged with WiMedia PHY/MAC technical specifications. In this paper, we focus on an integrated system of the wireless USB over the IEEE 802.15.6 wireless body area networks (WBAN) for wireless wearable computer systems supporting U-health services. And a communication structure that can differentiate QoS of U-health WBAN and WUSB traffic with different priorities is proposed for WUSB over IEEE 802.15.6 hierarchical protocol. In our proposal and performance evaluation, throughputs of U-health WBAN and WUSB traffic are analyzed under single and multiple QoS classes to evaluate the effectiveness of proposed QoS differentiating structure in WUSB over IEEE 802.15.6.

IEEE 802.15.6 중심의 WBAN 국내외 표준화 동향

  • Lee, Seong-Hyeop;Yun, Yang-Mun;Kim, Do-Hyeon
    • Information and Communications Magazine
    • /
    • v.25 no.2
    • /
    • pp.11-17
    • /
    • 2008
  • 최근 IT-BT-NT 융합의 대표적인 기술이며, wearable computing이나 healthcare와 같은 대표적인 응용분야를 포함하는 WBAN (Wireless Body Area Network)에 대해 IEEE 802.15.6 TG BAN을 중심으로 물리계층, 데이터 링크 계층, 네트워크 계층 및 응용 계층 등에 대해서 표준화가 진행되고 있다. IEEE 802.15 WG는 2006년 11월에 Wireless Medical BAN IG를 SG로 승인하였으며, 2007년 11월, 제51차 IEEE 802 WPAN 본회의에서 TG BAN으로 최종 승격하였다. 따라서, 본고에서는 IEEE 802.15.6 TG BAN을 중심으로 WBAN 국내외 표준화 활동에 대해 고찰하고자 한다.

Design of Time Synchronization Mechanism of Wireless USB over IEEE 802.15.6 (WUSB over IEEE 802.15.6 WBAN 프로토콜의 시각 동기 구조 설계)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1619-1627
    • /
    • 2014
  • Wearable computer systems can use the wireless universal serial bus (WUSB) that refers to USB technology that is merged with WiMedia PHY/MAC technical specifications. In this paper, we focus on an integrated system of the wireless USB over the IEEE 802.15.6 wireless body area networks (WBAN) for wireless wearable computer systems supporting U-health services. And a communication structure that performs the time-synchronization is proposed for WUSB over IEEE 802.15.6 hierarchical protocol. Proposed time-synchronization mechanisms adopt the WBAN Polling Access and combine it with a time-synchronization middleware using time stamps. In our performance evaluations, time-synchronization performances with only WBAN Polling Access scheme are analyzed first. After that, performances combined with the time-synchronization middleware are analyzed to evaluate the effectiveness of proposed time-synchronization structure in WUSB over IEEE 802.15.6.

Hibernation Structure Design of Wireless USB over IEEE 802.15.6 Hierarchical MAC Protocol (WUSB over IEEE 802.15.6 통합 MAC 프로토콜의 Hibernation 구조 설계)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1610-1618
    • /
    • 2014
  • Wearable computer systems can use the wireless universal serial bus (WUSB) that refers to USB technology that is merged with WiMedia PHY/MAC technical specifications. In this paper, we focus on an integrated system of the wireless USB over the IEEE 802.15.6 wireless body area networks (WBAN) for wireless wearable computer systems supporting U-health services. And a communication structure that performs the hibernation for low power consumption is proposed for WUSB over IEEE 802.15.6 hierarchical protocol. In the proposed hibernation mechanisms, WUSB communications are permitted at each m-periodic inactive periods of WBAN superframes by using the WBAN information of Wakeup Period and Wakeup Phase message fields. In our performance evaluations, performances according to amount of WUSB traffic and Wakeup Periods are analyzed respectively to evaluate the effectiveness of proposed hibernation structure in WUSB over IEEE 802.15.6.

A Coexistence Mitigation Scheme in IEEE 802.15.4-based WBAN (IEEE 802.15.4 기반 WBAN의 공존 문제 완화 기법)

  • Choi, Jong-hyeon;Kim, Byoung-seon;Cho, Jin-sung
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.1-11
    • /
    • 2015
  • WBAN(Wireless Body Area Network) operating around the human body aims at medical and non-medical service at the same time. and it is the short-range communication technology requiring low-power, various data rate and high reliability. Various studies is performing for IEEE 802.15.4, because IEEE 802.15.4 can provide high compatibility for operate WBAN among communication standard satisfiable these requirements. Meanwhile, in the case of coexisting many IEEE 802.15.4-based WBAN, signal interference and collision are the main cause that is decreasing data reliability. but IEEE 802.15.4 Standard does not consider about coexistence of many networks. so it needs improvement. In this paper, To solve about this problem, identify coexistence problem of IEEE 802.15.4-based WBAN by preliminary experiments. and propose a scheme to mitigate the reliability decrease at multiple coexistence WBAN. The proposed scheme can be classified in two steps. The first step is avoidance to collision on the CFP through improving data transmission. The second step is mitigation collision through converting channel access method. Proposed scheme is verified the performance by performing comparison experiment with Standard-based WBAN.

A Study on MAC Protocol with Dynamic Priority Adjustment in WBAN (WBAN 환경에서 동적 우선순위를 적용한 MAC 프로토콜에 관한 연구)

  • Jeong, Pil-Seong;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1589-1598
    • /
    • 2014
  • To support the WBAN, IEEE 802.15 Task Group 6 announced standardized documents on technical requirements of the PHY and MAC. In the IEEE 802.15.6 MAC protocol, CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) algorithm is performed based on the eight-level priorities according to the type of traffics of the periodic data from medical sensor nodes. Several nodes, which detected the changed bio signals, transmit emergency data at the same time, so latency could be higher than emergency latency and energy consumption will increase. In this thesis, we proposed a CSMA/CA algorithm in WBAN to solve these problems. Simulations are performed using a Castalia based on the OMNeT++ network simulation framework to estimate the performance of the proposed superframe and algorithms. Performance evaluation results show that the packet transmission success rate and energy efficiency are improved by reducing the probability of collision using the proposed MAC protocol.

Survey on Coexistence Problems in WBANs (WBAN 공존성 문제에 대한 연구동향)

  • Kim, BeomSeok;Lee, Hwa-Min;Kim, Seokhoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.544-547
    • /
    • 2016
  • WBAN (Wirless Body Area Network)은 IEEE 802.15.6에서 정의한 통신 표준으로 인체 내/외부 및 표면에 장착되는 무선 센서 장치들을 통해 의료 및 비의료 서비스를 동시에 제공하는 것을 목표로 한다. 이러한 WBAN은 인체 중심 구성과 네트워크 내부의 이동성 및 네트워크 단위의 이동성을 가지는 특성으로 인해 다수의 WBAN들이 좁은 공간에 공존할 수 있으며, 상호 간섭으로 인해 성능 저하와 같은 문제에 노출된다. 이러한 문제를 해결하기 위해 IEEE 802.15.6에서는 공존 상황을 이동성에 따라 3가지로 세분화 하였으며, 세분화된 각 상황에 적합한 공존성 해결 방안의 가이드라인을 제시하고 있다. 하지만 표준에서는 세분화한 공존 상황을 인지하는 알고리즘과 각 공존성 문제 해결방안의 상세 방안이 결여되어있다. 또한, WBAN의 공존성 문제를 해결하기 위해 제안된 기존의 연구들은 표준에서 정의한 공존상황을 고려하지 않고 있어 추후 표준 기반의 WBAN의 구현시 호환성이 결여된다는 문제점을 가지고 있다. 따라서 WBAN의 공존성 문제 해결에 대한 연구방향의 재조명이 필요한 때 이다. 본 논문에서는 IEEE 802.15.6 표준과 기존의 공존성 문제 해결 방안을 소개하며, 기존 연구의 연구 접근 방법을 분석하고 문제점을 제시한다. 또한, WBAN의 공존성 문제에 대한 새로운 접근 방법과 연구 방향을 제시한다.

A Study on Real Time Traffic Performance Improvement Considering QoS in IEEE 802.15.6 WBAN Environments (IEEE 802.15.6 WBAN 환경에서 QoS를 고려한 실시간 트래픽 성능향상에 관한 연구)

  • Ro, Seung-Min;Kim, Chung-Ho;Kang, Chul-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.84-91
    • /
    • 2011
  • Recently, WBAN(Wireless Body Area Network) which has progressed standardization based on IEEE 802.15.6 standardization is a network for the purpose of the short-range wireless communications within around 3 meters from the inner or outer human body. Effective QoS control technique and data efficient management in limited bandwidth such as audio and video are important elements in terms of users and loads in short-range wireless networks. In this paper, for high-speed WBAN IEEE 802.15.6 standard, the dynamic allocation to give an efficient bandwidth management and weighted fair queueing algorithm have been proposed through the adjustment of the super-frame about limited data and Quality of Service (QoS) based on the queuing algorithm. Weighted Fair Queueing(WFQ) Algorithm represents the robust performance about elements to qualitative aspects as well as maintaining fairness and maximization of system performance. The performance results show that the dynamic allocation expanded transmission bandwidth five times and the weighted fair queueing increased maximum 24.3 % throughput and also resolved delay bound problem.

Improved TDMA with Superframe Structure-based CSMA/CA MAC protocol for Wireless Body Area Network (WBAN을 지원하기 위한 개선된 슈퍼프레임 구조를 가지는 TDMA 기반의 CSMA/CA MAC 프로토콜)

  • Lee, Jae-Soo;Ahn, Jeong-Keun;Yun, Chan-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.87-93
    • /
    • 2012
  • Due to the development of information and communication, there is a rising interest on WBAN(Wireless Body Area Network) that maintain and check the human being health. According to the application of different quality of service and a special mechanism for transferring medical data are required in WBAN environment. In this paper, we proposed the new formed superframe that has CSMA/CA based TDMA scheduling and CSMA/CA used IEEE 802.15.4 in order to process emergency data and on-demand data in WBAN environment. We estimated performance of the proposed MAC protocol by compared performance of other MAC protocols that are IEEE 802.15.4 MAC protocl and Z-MAC protocol has contention access period based TDMA scheduling.