• Title/Summary/Keyword: IEEE 1547-2018

Search Result 5, Processing Time 0.02 seconds

Application Development and Type Test for Smart Inverter Based on IEEE 1547-2018 Utilizing Power HILS (Power HILS를 활용한 IEEE 1547-2018 기반 스마트 인버터의 기술개발 및 형식시험 연구)

  • Shin, Danbi;Kang, Moses;Lee, Hyuna;Hong, Seonri;Yoon, Gihwan;Baek, Jongbok
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • In order to secure the reliability of the power system and to increase the penetration level of distributed energy resources (DERs), requirements such as IEEE 1547 have been revised to strengthen the grid connection standards for DER. This paper proposes a control scheme for smart inverter functions based on IEEE 1547-2018 that satisfy these standards, and introduces a power HILS-based test platform built for verification of smart inverter. Among the smart inverter functions, Volt-var and Frequency-watt allow the curve to be set from the upper level to comply with the interoperability and operation time of enable signals for each function are controlled by references from the upper level. According to the requirement, Volt-var and Frequency-watt are performed via power HILS platform and verified through the measurement results that all of the specified type tests were satisfied.

Re-estimation of PV hosting capacity by improving parameters for voltage controls of the smart inverter (스마트인버터 전압제어의 파라미터 개선을 통한 PV hosting capacity 재추정 방법)

  • Juhyeon Kim;Gihwan Yoon;Yoondong Sung;Hak-Geun Jeong;Jongbok Baek;Moses Kang
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.657-667
    • /
    • 2023
  • This paper proposes two-stage optimization framework to re-estimate the photovoltaic (PV) hosting capacity (HC) by improving parameters for voltage controls of the smart inverter. In the first stage, PV HC is estimated considering Volt-Var (VV) and Volt-Watt (VW) controls, aligning with IEEE Std 1547-2018 guidelines. In the second stage, adjust parameters of VV and VW to improve HC. To investigate the performance of the proposed algorithm, simulations conducted using OpenDSS on an IEEE 37-bus system. The results demonstrate that effectively increases PV HC.

A Novel Harmonic Compensation Method for the Single Phase Grid Connected Inverters (단상 계통연계 인버터를 위한 새로운 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.144-146
    • /
    • 2018
  • In order to meet the harmonics standards such as IEEE 519 and P1547 the output quality of a grid connected inverter should satisfy a certain level of Total Harmonic Distortion (THD) value. However, the output quality of an inverter gets degraded due to the grid voltage harmonics, the dead time effects and the nonlinearity of the switches, which all contributes to a higher THD value of the output. In order to meet the required THD value for the inverter output under the distorted grid condition the use of harmonic controller is essential. In this paper a novel feedforward harmonic compensation method is proposed in order to effectively eliminate the low order harmonics in the inverter current to the grid. In the proposed method, unlike the conventional harmonic control methods, the hamonic components are directly compensated by the feedforward terms generated by the PR controller with the grid current in the stationary frame. The proposed method is simple in implementation but powerful in eliminating the harmonics from the output. The effectiveness of proposed method is verified through the PSIM simulation and the experiments with a 5kW single phase grid connected inverter.

  • PDF

A Robust PLL Technique Based on the Digital Lock-in Amplifier under the Non-Sinusoidal Grid Conditions (디지털 록인앰프를 이용한 비정현 계통하에서 강인한 PLL 방법)

  • Ashraf, Muhammad Noman;Khan, Reyyan Ahmad;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.104-106
    • /
    • 2018
  • The harmonics and the DC offset in the grid can cause serious synchronization problems for grid connected inverters (GCIs) which leads not able to satisfy the IEEE 519 and p1547 standards in terms of phase and frequency variations. In order to guarantee the smooth and reliable synchronization of GCIs with the grid, Phase Locked Loop (PLL) is the crucial element. Typically, the performance of the PLL is assessed to limit the grid disturbances e.g. grid harmonics, DC Offset and voltage sag etc. To ensure the quality of GCI, the PLL should be precise in estimating the grid amplitude, frequency and phase. Therefore, in this paper a novel Robust PLL technique called Digital Lock-in Amplifier (DLA) PLL is proposed. The proposed PLL estimate the frequency variations and phase errors accurately even in the highly distorted grid voltage conditions like grid voltage harmonics, DC offsets and grid voltage sag. To verify the performance of proposed method, it is compared with other six conventional used PLLs (CCF PLL, SOGI PLL, SOGI LPF PLL, APF PLL, dqDSC PLL, MAF PLL). The comparison is done by simulations on MATLAB Simulink. Finally, the experimental results are verified with Single Phase GCI Prototype.

  • PDF

A Robust Harmonic Compensation Technique using Digital Lock-in Amplifier under the Non-Sinusoidal Grid Voltage Conditions for the Single Phase Grid Connected Inverters (디지털 록인 앰프를 이용한 비정현 계통 전압 하에서 강인한 단상계통 연계 인 버터용 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.95-97
    • /
    • 2018
  • The power quality of Single Phase Grid-Connected Inverters (GCIs) has received much attention with the increasing number of Distributed Generation (DG) systems. However, the performance of single phase GCIs get degraded due to several factors such as the grid voltage harmonics, the dead time effect, and the turn ON/OFF of the switches, which causes the harmonics at the output of GCIs. Therefore, it is not easy to satisfy the harmonic standards such as IEEE 519 and P1547 without the help of harmonic compensator. To meet the harmonic standards a certain kind of harmonic controller needs to be added to the current control loop to effectively mitigate the low order harmonics. In this paper, the harmonic compensation is performed using a novel robust harmonic compensation method based on Digital Lock-in Amplifier (DLA). In the proposed technique, DLAs are used to extract the amplitude and phase information of the harmonics from the output current and compensate it by using a simple PI controller in the feedforward manner. In order to show the superior performance of the proposed harmonic compensation technique, it is compared with those of conventional harmonic compensation methods in terms of the effectiveness of harmonic elimination, complexity, and implementation. The validity of the proposed harmonic compensation techniques for the single phase GCIs is verified through the experimental results with a 5kW single phase GCI. Index Terms -Single Phase Grid Connected Inverter (SPGCI), Harmonic Compensation Method, Total Harmonic Distortion (THD) and Harmonic Standard.

  • PDF