• Title/Summary/Keyword: IEC Standards

Search Result 516, Processing Time 0.02 seconds

A Study on Integrated Logistic Support (통합병참지원에 관한 연구)

  • 나명환;김종걸;이낙영;권영일;홍연웅;전영록
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.277-278
    • /
    • 2001
  • The successful operation of a product In service depends upon the effective provision of logistic support in order to achieve and maintain the required levels of performance and customer satisfaction. Logistic support encompasses the activities and facilities required to maintain a product (hardware and software) in service. Logistic support covers maintenance, manpower and personnel, training, spares, technical documentation and packaging handling, storage and transportation and support facilities.The cost of logistic support is often a major contributor to the Life Cycle Cost (LCC) of a product and increasingly customers are making purchase decisions based on lifecycle cost rather than initial purchase price alone. Logistic support considerations can therefore have a major impact on product sales by ensuring that the product can be easily maintained at a reasonable cost and that all the necessary facilities have been provided to fully support the product in the field so that it meets the required availability. Quantification of support costs allows the manufacturer to estimate the support cost elements and evaluate possible warranty costs. This reduces risk and allows support costs to be set at competitive rates.Integrated Logistic Support (ILS) is a management method by which all the logistic support services required by a customer can be brought together in a structured way and In harmony with a product. In essence the application of ILS:- causes logistic support considerations to be integrated into product design;- develops logistic support arrangements that are consistently related to the design and to each other;- provides the necessary logistic support at the beginning and during customer use at optimum cost.The method by which ILS achieves much of the above is through the application of Logistic Support Analysis (LSA). This is a series of support analysis tasks that are performed throughout the design process in order to ensure that the product can be supported efficiently In accordance with the requirements of the customer.The successful application of ILS will result in a number of customer and supplier benefits. These should include some or all of the following:- greater product uptime;- fewer product modifications due to supportability deficiencies and hence less supplier rework;- better adherence to production schedules in process plants through reduced maintenance, better support;- lower supplier product costs;- Bower customer support costs;- better visibility of support costs;- reduced product LCC;- a better and more saleable product;- Improved safety;- increased overall customer satisfaction;- increased product purchases;- potential for purchase or upgrade of the product sooner through customer savings on support of current product.ILS should be an integral part of the total management process with an on-going improvement activity using monitoring of achieved performance to tailor existing support and influence future design activities. For many years, ILS was predominantly applied to military procurement, primarily using standards generated by the US Government Department of Defense (DoD). The military standards refer to specialized government infrastructures and are too complex for commercial application. The methods and benefits of ILS, however, have potential for much wider application in commercial and civilian use. The concept of ILS is simple and depends on a structured procedure that assures that logistic aspects are fully considered throughout the design and development phases of a product, in close cooperation with the designers. The ability to effectively support the product is given equal weight to performance and is fully considered in relation to its cost.The application of ILS provides improvements in availability, maintenance support and longterm 3ogistic cost savings. Logistic costs are significant through the life of a system and can often amount to many times the initial purchase cost of the system.This study provides guidance on the minimum activities necessary to Implement effective ILS for a wide range of commercial suppliers. The guide supplements IEC60106-4, Guide on maintainability of equipment Part 4: Section Eight maintenance and maintenance support planning, which emphasizes the maintenance aspects of the support requirements and refers to other existing standards where appropriate. The use of Reliability and Maintainability studies is also mentioned in this study, as R&M is an important interface area to ILS.

  • PDF

A Design and Implementation of Multimedia Retrieval System based on MAF(Multimedia Application File Format) (MAF(Multimedia Application File Format) 기반 멀티미디어 검색 시스템의 설계 및 구현)

  • Gang Young-Mo;Park Joo-Hyoun;Bang Hyung-Gin;Nang Jong-Ho;Kim Hyung-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.574-584
    • /
    • 2006
  • Recently, ISO/IEC 23000 (also known as 'MPEG-A') has proposed a new file format called 'MAF(Multimedia Application File Format)[1]' which provides a capability of integrating/storing the widely-used compression standards for audio and video and the metadata in MPEG-7 form into a single file format. However, it is still very hard to verify the usefulness of MPEG-A in the real applications because there is still no real system that fully implements this standard. In this thesis, a design and implementation of a multimedia retrieval system based on MPEG-A standard on PC and mobile device is presented. Furthermore, an extension of MPEG-A for describing the metadata for video is also proposed. It is selected and defined as a subset of MPEG-7 MDS[4] and TV-anytime[5] for video that is useful and manageable in the mobile environments. In order to design the multimedia retrieval system based on MPEG-A, we define the system requirements in terms of portability, extensibility, compatibility, adaptability, efficiency. Based on these requirements, we design the system which composed of 3 layers: Application Layer, Middleware Layer, Platform Layer. The proposed system consists of two sub-parts, client-part and server-part. The client-part consists of MAF authoring tool, MAP player tool and MAF searching tool which allow users to create, play and search the MAF files, respectively. The server-part is composed of modules to store and manage the MAF files and metadata extracted from MAF files. We show the usefulness of the proposed system by implementing the client system both on MS-Windows platform on desk-top computer and WIPI platform on mobile phone, and validate whether it to satisfy all the system requirements. The proposed system can be used to verify the specification in the MPEG-A, and to proves the usefulness of MPEG-A in the real application.

Model Integration of Systems Design and Safety Analysis Processes for Systematic Design of Safety-Critical Systems (안전중시 시스템의 체계적인 설계를 위한 시스템 설계 및 안전 분석 활동 모델의 통합)

  • Kim, Chang-Won;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.363-368
    • /
    • 2016
  • In safety-critical systems (SCS), failure may result in accidents with serious damage to human beings and property. As systems become more complex and automated, the goal of acquiring safety has attracted increasing attention lately in the defense industry, as well as the rail, automotive, and aerospace industries, among others. As such, the Department of Defense and international organizations have established appropriate standards and guidelines for systems safety and design. To this end, there has been research on the processes, methods, and associated tools for safety design. However, those results do not seem to sufficiently utilize system architectural information. The purpose of this paper is to provide a more systematic approach to SCS design. To better identify potential hazards, design information at each level of system hierarchy is exploited. Based on the results, an integrated process model was developed by combining the processes of system design and safety analysis. As a case study, the resultant integrated process model was applied to the safety design of an automobile system, which shows useful results for safety evaluation.

A Policy-driven RFID Data Management Event Definition Language (정책기반 RFID 데이터 관리 이벤트 정의 언어)

  • Song, Ji-Hye;Kim, Kwang-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.12 no.1
    • /
    • pp.55-70
    • /
    • 2011
  • In this paper, we propose a policy-driven RFID data management event definition language, which is possibly applicable as a partial standard for SSI (Software System Infrastructure) Part 4 (Application Interface, 24791-4) defined by ISO/IEC JTC 1/SC 31/WG 4 (RFID for Item Management). The SSI's RFID application interface part is originally defined for providing a unified interface of the RFID middleware functionality―data management, device management, device interface and security functions. However, the current specifications are too circumstantial to be understood by the application developers who used to lack the professional and technological backgrounds of the RFID middleware functionality. As an impeccable solution, we use the concept of event-constraint policy that is not only representing semantic contents of RFID domains but also providing transparencies with higher level abstractions to RFID applications, and that is able to provide a means of specifying event-constraints for filtering a huge number of raw data caught from the associated RF readers. Conclusively, we try to embody the proposed concept by newly defining an XML-based RFID event policy definition language, which is abbreviated to rXPDL. Additionally, we expect that the specification of rXPDL proposed in the paper becomes a technological basis for the domestic as well as the international standards that are able to be extensively applied to RFID and ubiquitous sensor networks.

자동차 전자파

  • 성현수;신승현;문진동;한종철
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.5 no.4
    • /
    • pp.83-93
    • /
    • 1994
  • 1886년 고트리브 다이믈러와 칼 벤즈가 가솔린 자동차를 개발한 이후 100여년이 지난 지금 자동차는 비약적으로 진보, 발전하여 현대 산업사회와 개인의 생활에 있어 산업운송수단과 이동수단으 로서 필요불가결하게 되어 밀접한 관계를 갖고 있다. 우리나라 자동차 공업의 역사는 자동차가 사회적, 경제적 효용에 따라 그 생산과 보유대수가 날이 갈수록 증가 일로에 있으며, 자동차의 생산대수는 전세 계에서 년간 약 50,606천대('94년)로서 중요한 국가 기간 산업으로 자리하고 있다. 한편 전기, 전자공업의 발전에 따른 자동차의 Car Electronics가 많이 채용되게 됨에 따라 현재의 자 동차에는 대부분이 전자제어 System으로 구성되어 있다. 최근에는 Micro Processor를 이용한 전자부품이 많이 사용되어 전자파에 대한 문제가 다양하게 발생 하고 있다. 예를 들면 미국 캘리포니아주에서 전자점화제어장치와 연료분사 장치를 설치한 구미의 자동 차가 주행중 28MHz, 28W의 아마추어 무선을 탑제한 자동차가 통과할 때 엔진이 고르지 못한 보고가 있 었고, 화학섬유로된 옷을 착용한 전자부품이 다른 부품에 영향을 주는 사례가 맣아지고 있다. 따라서 자동차에는 여러가지의 전장품, 전자기기를 탑재하기 때문에 자동차 자체에서 발생하는 것과 외부로 부터 받는 전자장해 EMI(Electromagnetic Interference), EMS(Electromagnetic Susceptibility) 가 문제로 되어 자동차 및 부품 maker에 의한 EMC(Electromagnetic Compatibility) 평가의 중요성이 고조되고 있다. 차제무전기, 차제무전기, Car-Radio는잡음방해를 많이 받기도 하지만, 잡음원이 되기 도 한다. 또한 Engine 제어, 차속제어, Brake 제어등에 이용되는 전자제품은 방해에 의한 오동작 또는 파괴가 발생하여 주행기능, 안전성에 문제가 야기되지 않도록 해야 한다. 이러한 전자기 환경은 모두 RF(Radio Frequence)와 자동차에서의 전자파 장해 문제의 원이 될 수 있다. 자동차 및 그 부품의 전자기 방해에 관한 규격화는 1987년부터 괄목할 만하게 진행되어 이에 따른 규제 움직임이 IEC(International Electrotechnical Commission: 국제전기기술위원회) 산하의 하부기 구인 CISPR(International Special Committeeon Radio Interference: 국제 무선 장해 특별위원회)가 전자기 방해파에 대한 측정법 통일안을 제안 하였고, ISO(International Standardization Organiza- tion: 국제표준화 기구) 가운데 TC 22/SC3가 자동차의 전장품에 대한 장해를 논의히고 있다. 특히, 자동차의 EMC에 관한 국가 규격은 국제 규격에서 저술한 바와 같이 특별히 규정된 것이 없고 VDE(Verband Deutscher Elektrotechniker: 서독전기기술 협회)와 SAE(Society of Automotive Engi- neers: 자동차 기술자 협회)에서 비교적 활발하고 Jaso(Japanese Automobile Standards Organization: 일본 자동차 표준협회)에서 많이 진행중에 있다. 본 고에서는 자동차의 전자제어에 따른 잡음 발생 요인과 전자파 간섭 관련 자동차 규격과 시험평가 방법에 대해 간단히 소개 하였다.

  • PDF

A Study for Application of Standard and Performance Test According to Purpose and Subject of Respiratory Medical Device (호흡보조의료기기의 사용목적 및 대상에 따른 규격적용 방안 및 성능에 관한 연구)

  • Park, Junhyun;Ho, YeJi;Lee, Duck Hee;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.215-221
    • /
    • 2019
  • The respiratory medical device is a medical device that delivers optimal oxygen or a certain amount of humidification to a patient by delivering artificial respiration to a patient through a machine when the patient has lost the ability to breathe spontaneously. These include respirators for use in chronic obstructive pulmonary disease and anesthesia or emergency situations, and positive airway pressure devices for treating sleep apnea, and as the population of COPD (chronic obstructive pulmonary disease) and elderly people worldwide surge, the market for the respiratory medical devices it is getting bigger. As the demand for both airway pressure devices, there is a problem that the ventilator standard is applied because the reference standard has not been established. Therefore, the boundaries between the items are blurred due to the purpose, intended use, and method of use overlapping similar items in a respiratory medical device. In addition, for both airway pressure devices, there is a problem that the ventilator standard is applied because the reference standard has not been established. Therefore, in this study, we propose clear classification criteria for the respiratory medical devices according to the purpose, intended use, and method of use and provide safety and performance evaluation guidelines for those items to help quality control of the medical devices. And to contribute to the rapid regulating and improvement of public health. This study investigated the safety and performance test methods through the principles of the respiratory medical device, national and international standards, domestic and international licensing status, and related literature surveys. The results of this study are derived from the safety and performance test items in the individual ventilator(ISO 80601-2-72), the International Standard for positive airway pressure device (ISO 80601-2-70), The safety and performance of humidifiers (ISO 80601-2-74) and the safety evaluation items related to home healthcare environment (IEC 60601-1-11), In addition, after reviewing the guidelines drawn up through expert consultation bodies including manufacturers and importers, certified test inspection institutions, academia, etc., the final guidelines were established through revision and supplementation. Therefore, in this study, we propose guidelines for evaluating the safety and performance of the respiratory medical device in accordance with growing technology development.