• Title/Summary/Keyword: IEC 60599

Search Result 5, Processing Time 0.024 seconds

Efficient Transformer Dissolved Gas Analysis and Classification Method (효율적인 변압기 유중가스 분석 및 분류 방법)

  • Cho, Yoon-Jeong;Kim, Jae-Young;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.563-570
    • /
    • 2018
  • This paper proposes an efficient dissolved gas analysis(DGA) and classification method of an oil-filled transformer using machine learning algorithms to solve problems inherent in IEC 60599. In IEC 60599, a certain diagnosis criteria do not exist, and duplication area is existed. Thus, it is difficult to make a decision without any experts since the IEC 60599 standard can not support analysis and classification of gas date of a power transformer in that criteria. To address these issue. we propose a dissolved gas analysis(DGA) and classification method using a machine learning algorithm. We evaluate the performance of the proposed method using support vector machines with dissolved gas dataset extracted from a power transformer in the real industry. To validate the performance of the proposed method, we compares the proposed method with the IEC 60599 standard. Experimental results show that the proposed method outperforms the IEC 60599 in the classification accuracy.

A Fault Diagnosis Method of Oil-Filled Power Transformers Using IEC Code based Neuro-Fuzzy Model (IEC 코드 기반의 뉴로-퍼지모델을 이용한 유입변압기 고장진단 기법)

  • Seo, Myeong-Seok;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • It has been proven that the dissolved gas analysis (DGA) is the most effective and convenient method to diagnose the transformers. The DGA is a simple, inexpensive, and non intrusive technique. Among the various diagnosis methods, IEC 60599 has been widely used in transformer in service. But this method cannot offer accurate diagnosis for all the faults. This paper proposes a fault diagnosis method of oil-filled power transformers using IEC code based neuro-fuzzy model. The proposed method proceeds two steps. First, IEC 60599 method is applied to diagnosis. If IEC code can't determine the fault type, neuro-fuzzy model is applied to effectively classify the fault type. To demonstrate the validity of the proposed method, experiment is performed and its results are illustrated.

Dissolved Gas Analysis Interpretation System for Power Transformers using Statical Fuzzy Function (통계적 퍼지 함수를 이용한 전력용 변압기 유중가스 판정 시스템)

  • Cho, Sung-Min;Kim, Jae-Chul;Shin, Hee-Sang;Kweon, Dong-Jin;Koo, Kyo-Sun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.275-278
    • /
    • 2007
  • Dissolved gases analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. Criteria interpreting DGA result is the most important. Because of difference of operation environment, construction type, oil volume, and etc, the interpretative criteria of DGA at KEPCO must be different with other standard like IEC-60599, Rogers and Doernenburg. In this paper, we collected the DGA data of the normal condition transformers and the incipient fault transformer to suggest the most appropriate criteria. Using these data, this paper suggests appropriate condition classification algorithm. Suggested algorithm can help to detect incipient fault earlier without unnecessary sampling.

  • PDF

Fault Diagnosis of Oil-filled Power Transformer using DGA and Intelligent Probability Model (유중가스 분석법과 지능형 확률모델을 이용한 유입변압기 고장진단)

  • Lim, Jae-Yoon;Lee, Dae-Jong;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.188-193
    • /
    • 2016
  • It has been proven that the dissolved gas analysis (DGA) is the most effective and convenient method to diagnose the transformers. The DGA is a simple, inexpensive, and non intrusive technique. Among the various diagnosis methods, IEC 60599 has been widely used in transformer in service. But this method cannot offer accurate diagnosis for all the faults. This paper proposes a fault diagnosis method of oil-filled power transformers using DGA and Intelligent Probability Model. To demonstrate the validity of the proposed method, experiment is performed and its results are illustrated.

The New Criteria of Dissolved Gas Analysis for Oil-Filled Transformers Using a Cumulative Distribution Function

  • Cho, Sung-Min;Kim, Jae-Chul;Kweon, Dong-Jin;Koo, Kyo-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.87-94
    • /
    • 2007
  • This paper presents new criteria for DGA(Dissolved Gases Analysis) using CDF(Cumulative Distribution Function) obtained from the data from the diagnosis of transformers operated in KEPCO over a period of 16 years. Because of differences in operating environments, construction type, oil volume, and other factors, the interpretative criteria of DGA at KEPCO differs from other standards such as IEC-60599, or Rogers and Doernenburg. To suggest the most appropriate criteria, the DGA data from transformers under normal conditions as well as from developing fault transformers were collected. Using these data, this study suggests the limitative gas level of transformers under normal operating conditions and verifies the suitability of the criteria. Because the application of this new criterion to transformers at KEPCO increases the detectable ratio of incipient faults and reduces unnecessary follow-up sampling and analysis, the new criteria yields a more reliable prediction of transformer condition.