• Title/Summary/Keyword: ID based Public Key Cryptosystem

Search Result 17, Processing Time 0.021 seconds

A Credit Card based Authentication and Key Exchange Protocol for Mobile Internet (무선 인터넷을 위한 신용카드 기반의 인증 및 키 교환 프로토콜)

  • 이현주;이충세
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1732-1742
    • /
    • 2003
  • WPP protocol based a Credit card payment in mobile Internet uses WTLS which is security protocol of WAP. WTLS can't provide End­to­End security in network. In this paper, we propose a protocol both independent in mobile Internet platform and allow a security between user and VASP using Mobile Gateway in AIP. In particular, our proposed protocol is suitable in mobile Internet, since session key for authentication and initial payment process is generated using Weil Diffie­Hellman key exchange method that use additive group algorithm on elliptic curve.

CLB-ECC: Certificateless Blind Signature Using ECC

  • Nayak, Sanjeet Kumar;Mohanty, Sujata;Majhi, Banshidhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.970-986
    • /
    • 2017
  • Certificateless public key cryptography (CL-PKC) is a new benchmark in modern cryptography. It not only simplifies the certificate management problem of PKC, but also avoids the key escrow problem of the identity based cryptosystem (ID-PKC). In this article, we propose a certificateless blind signature protocol which is based on elliptic curve cryptography (CLB-ECC). The scheme is suitable for the wireless communication environment because of smaller parameter size. The proposed scheme is proven to be secure against attacks by two different kinds of adversaries. CLB-ECC is efficient in terms of computation compared to the other existing conventional schemes. CLB-ECC can withstand forgery attack, key only attack, and known message attack. An e-cash framework, which is based on CLB-ECC, has also been proposed. As a result, the proposed CLB-ECC scheme seems to be more effective for applying to real life applications like e-shopping, e-voting, etc., in handheld devices.

Certificate-less Public Key Cryptosystem with Strong Key Insulation (Strong Key Insulation을 제공하는 Certificate-less 공개키 암호 시스템)

  • 한상윤;염대현;황용호;이필중
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2003.12a
    • /
    • pp.611-614
    • /
    • 2003
  • S.S.Al-Riyami와 K.G.Paterson에 의해 제안된 Certificate-less 공개키 암호 시스템은 기존 공개키 암호 시스템이 가지는 인증서 관리의 불편함과 ID-based 암호 시스템이 가지는 Key Escrow문제를 동시에 해결해 주었다. 하지만 대부분의 공개키 암호 시스템 과 마찬가지로 Certificate-less 공개키 암호 시스템 역시 비공개키의 노출에 대한 문제를 가지고 있다. 따라서 본 논문에서는 기존 Certificate-less 공개키 암호 시스템에 Strong Key Insulation을 제공함으로써 보다 안전한 암호 시스템을 제안한다. 또한 이 시스템은 기존 Key Insulated 공개키 암호 시스템에 비해 계산량을 줄임으로써 보다 효율적인 암호 시스템을 구축할 수 있다.

  • PDF

OpenID Based User Authentication Scheme for Multi-clouds Environment (멀티 클라우드 환경을 위한 OpenID 기반의 사용자 인증 기법)

  • Wi, Yukyeong;Kwak, Jin
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.215-223
    • /
    • 2013
  • As cloud computing is activated, a variety of cloud services are being distributed. However, to use each different cloud service, you must perform a individual user authentication process to service. Therefore, not only the procedure is cumbersome but also due to repeated authentication process performance, it can cause password exposure or database overload that needs to have user's authentication information each cloud server. Moreover, there is high probability of security problem that being occurred by phishing attacks that result from different authentication schemes and input scheme for each service. Thus, when you want to use a variety of cloud service, we proposed OpenID based user authentication scheme that can be applied to a multi-cloud environment by the trusted user's verify ID provider.

A Secure Micro-Payment Protocol based on Credit Card in Wireless Internet (무선인터넷에서 신용카드기반의 안전한 소액 지불 프로토콜)

  • Kim Seok mai;Kim Jang Hwan;Lee Chung sei
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1692-1706
    • /
    • 2004
  • Recently, there are rapid development of information and communication and rapid growth of e-business users. Therefore we try to solve security problem on the internet environment which charges from wire internet to wireless internet or wire/wireless internet. Since the wireless mobile environment is limited, researches such as small size, end-to-end and privacy security are performed by many people. Wireless e-business adopts credit card WPP protocol and AIP protocol proposed by ASPeCT. WAP, one of the protocol used by WPP has weakness of leaking out information from WG which conned wire and wireless communication. certification chain based AIP protocol requires a lot of computation time and user IDs are known to others. We propose a Micro-Payment protocol based on credit card. Our protocol use the encryption techniques of the public key with ID to ensure the secret of transaction in the step of session key generation. IDs are generated using ECC based Weil Paring. We also use the certification with hidden electronic sign to transmit the payment result. The proposed protocol solves the privacy protection and Non-repudiation p개blem. We solve not only the safety and efficiency problem but also independent of specific wireless platform. The protocol requires the certification organization attent the certification process of payment. Therefore, other domain provide also receive an efficient and safe service.

Study on Improvement of Weil Pairing IBE for Secret Document Distribution (기밀문서유통을 위한 Weil Pairing IBE 개선 연구)

  • Choi, Cheong-Hyeon
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.59-71
    • /
    • 2012
  • PKI-based public key scheme is outstanding in terms of authenticity and privacy. Nevertheless its application brings big burden due to the certificate/key management. It is difficult to apply it to limited computing devices in WSN because of its high encryption complexity. The Bilinear Pairing emerged from the original IBE to eliminate the certificate, is a future significant cryptosystem as based on the DDH(Decisional DH) algorithm which is significant in terms of computation and secure enough for authentication, as well as secure and faster. The practical EC Weil Pairing presents that its encryption algorithm is simple and it satisfies IND/NM security constraints against CCA. The Random Oracle Model based IBE PKG is appropriate to the structure of our target system with one secret file server in the operational perspective. Our work proposes modification of the Weil Pairing as proper to the closed network for secret file distribution[2]. First we proposed the improved one computing both encryption and message/user authentication as fast as O(DES) level, in which our scheme satisfies privacy, authenticity and integrity. Secondly as using the public key ID as effective as PKI, our improved IBE variant reduces the key exposure risk.

Identity-Based Online/Offline Signcryption Without Random Oracles (ID기반 온라인/오프라인 사인크립션(Signcryption) 기법)

  • Park, Seung-Hwan;Kim, Ki-Tak;Koo, Woo-Kwon;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.5
    • /
    • pp.23-36
    • /
    • 2010
  • Signcryption is a cryptographic primitive which offers authentication and confidentiality simultaneously with a cost lower than signing and encrypting the message independently. We propose a new cryptographic notion called Identity-based online/offline signcryption. The notion of online/offline scheme can be divided into two phases, the first phase is performed offline prior to the arrival of a message to be signed or encrypted and the second phase is performed online phase after knowing the message and the public key of recipient. The Online phase does not require any heavy computations such as pairings or exponents. It is particularly suitable for power-constrained devices such as smart cards. In this paper, we propose ID-based signcryption scheme and ID-based online/offline signcryption scheme where the confidentiality and authenticity are simultaneously required to enable a secure and trustable communication environment. To our best knowledge, this is the first ID-based online/offline signcryption scheme that can be proven secure in the standard model.