• Title/Summary/Keyword: ICT learning

Search Result 683, Processing Time 0.071 seconds

Real-time video Surveillance System Design Proposal Using Abnormal Behavior Recognition Technology

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.120-123
    • /
    • 2020
  • The surveillance system to prevent crime and accidents in advance has become a necessity, not an option in real life. Not only public institutions but also individuals are installing surveillance cameras to protect their property and privacy. However, since the installed surveillance camera cannot be monitored for 24 hours, the focus is on the technology that tracks the video after an accident occurs rather than prevention. In this paper, we propose a system model that monitors abnormal behaviors that may cause crimes through real-time video, and when a specific behavior occurs, the surveillance system automatically detects it and responds immediately through an alarm. We are a model that analyzes real-time images from surveillance cameras and uses I3D models from analysis servers to analyze abnormal behavior and deliver notifications to web servers and then to clients. If the system is implemented with the proposed model, immediate response can be expected when a crime occurs.

A Study on Prediction of Linear Relations Between Variables According to Working Characteristics Using Correlation Analysis

  • Kim, Seung Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.228-239
    • /
    • 2022
  • Many countries around the world using ICT technologies have various technologies to keep pace with the 4th industrial revolution, and various algorithms and systems have been developed accordingly. Among them, many industries and researchers are investing in unmanned automation systems based on AI. At the time when new technology development and algorithms are developed, decision-making by big data analysis applied to AI systems must be equipped with more sophistication. We apply, Pearson's correlation analysis is applied to six independent variables to find out the job satisfaction that office workers feel according to their job characteristics. First, a correlation coefficient is obtained to find out the degree of correlation for each variable. Second, the presence or absence of correlation for each data is verified through hypothesis testing. Third, after visualization processing using the size of the correlation coefficient, the degree of correlation between data is investigated. Fourth, the degree of correlation between variables will be verified based on the correlation coefficient obtained through the experiment and the results of the hypothesis test

A Study on Smart Safety Helmet Service Using IoT and Deep Learning Video Analysis (IoT와 딥러닝 영상분석을 이용한 스마트 안전모 서비스 연구)

  • Kwak, Woo-Chan;Hur, Ji-Woong;Kim, Min-Jeong;Sim, Bo-Kyoung;Kim, Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1055-1058
    • /
    • 2021
  • 2019년 산업재해 현황 분석 결과 복장, 보호구의 잘못 사용으로 사고가 발생한 비율이 20%로 높은 비율을 차지했고, 전체 사고자 중 두부 손상을 입은 비율이 41%로 가장 높은 비율을 보였다[1]. 고용 노동부가 발표한 '건설현장 추락위험 일제점검 결과(2021.7)'에서는 안전모 미착용 근로자가 32.6%를 차지하였다[2]. 우리는 ICT기술을 활용해 안전모의 기능개선 가능성을 확인하였고, 안전사고를 예방하고, 빠르게 감지할 수 있는 스마트 안전모를 개발하고자 하였다. 그리고 본 연구를 통해 IoT 센서들과 딥러닝 영상분석을 이용한 스마트 안전모 서비스는 작업 전 부정착용 방지, 작업 중 위험감지, 사고 발생 시 빠른 감지를 통한 신속한 대처를 목표로 하여, 안전한 작업환경을 만들 수 있는 가능성을 제시하고자 한다.

E-resources usage among Polytechnic students in Southwest Nigeria: evidence from Federal Polytechnic, Ede and The Polytechnic, Ibadan Nigeria

  • Alasa, Sekinat Abiodun;Quadri, Ganiyu Oluwaseyi
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.12 no.1
    • /
    • pp.49-65
    • /
    • 2022
  • This study examined e-resources usage among polytechnic students in Southwest Nigeria. A descriptive research design was adopted for this study and the population consisted of polytechnic students from The Polytechnic, Ibadan and Federal Polytechnic, Ede. There were 9671 students from both polytechnics. A multi-stage sampling technique was employed with a sample fraction of 5% was drawn from the total number of students in each faculty amounting to 381. A structured questionnaire was the major instrument used for data collection and the questionnaire was pre-tested using Cronbach-alpha to determine the reliability co-efficient. Data obtained was analyzed using SPSS. The study found that the students from both polytechnics are aware of the e-resources and that the e-resources were mainly used for research, class assignment and to update knowledge. The problem such as epileptic power supply, poor internet connection and so on was identified. The study concluded that polytechnic students could benefit immensely from the enormous usage of e-resources particularly for teaching, learning and research. Based on the findings, recommendations were made.

A Study on Machine Learning model for detection of DoS Attack (IP카메라의 DoS 공격 탐지 머신러닝 모델에 대한 연구)

  • Jung, Woong-Kyo;Kim, Dong-Young;Kwak, Byung Il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.709-711
    • /
    • 2022
  • ICT 기술의 빠른 발전과 함께 Internet of Things (IoT) 환경에서의 Internet Protocol (IP) 카메라의 사용률이 증가하면서, IP 카메라에 대한 개인정보 이슈와 제품의 보안성 검토 관련 소비자의 개인정보 유출 우려가 증가하고 있다. 본 논문에서는, IP 카메라에 대한 4개 종류의 Denial of Service (DoS) 공격을 통해 IP 카메라 이상 반응을 확인했다. 또한, 이 과정에서 수집한 공격 패킷 데이터를 기반으로, DoS 공격을 탐지하는 간단한 피쳐 구성과 머신러닝 모델을 제안하였다. 최종적으로, DoS 공격을 통해 실제 IP 카메라에 대한 가용성 테스트를 수행하였으며 머신러닝 알고리즘 4개 Decision Tree, Random Forest, Multilayer Perceptron, SVM에서의 DoS 공격 탐지 성능을 비교하였다.

A Survey on Methodology of Meta-Learning (메타 러닝과 방법론 연구 동향)

  • Hoon Ji;Yeon-Joon Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.665-666
    • /
    • 2023
  • 딥러닝은 인간이 탐지하기 어려운 데이터의 특징 및 패턴을 인지하고, 이들을 학습하여 데이터를 분류 및 예측할 수 있는 기술이다. 그러나 딥러닝 모델을 잘 학습시키기 위해서는 고품질의 대용량 데이터와 이들을 처리할 수 있는 방대한 컴퓨터 자원이 요구되는 것이 일반적이다. 따라서 소량의 데이터만이 존재하는 분야나 컴퓨터 자원이 한정되어 있는 상황에서는 딥러닝을 적용하기 어렵다. 본 논문에서는, 소량의 데이터로도 모델을 자신들의 태스크에 맞게 최적화시킬 수 있는 메타러닝에 대해 소개하고, 메타 러닝 기법들의 방향에 따른 Metric-Based, Model-Based 및 Optimization 기반 모델들에 대해 소개하고, 앞으로 나아가야 할 연구 방향에 대해 제시한다.

Analysis of AI Model Hub

  • Yo-Seob Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.442-448
    • /
    • 2023
  • Artificial Intelligence (AI) technology has recently grown explosively and is being used in a variety of application fields. Accordingly, the number of AI models is rapidly increasing. AI models are adapted and developed to fit a variety of data types, tasks, and environments, and the variety and volume of models continues to grow. The need to share models and collaborate within the AI community is becoming increasingly important. Collaboration is essential for AI models to be shared and improved publicly and used in a variety of applications. Therefore, with the advancement of AI, the introduction of Model Hub has become more important, improving the sharing, reuse, and collaboration of AI models and increasing the utilization of AI technology. In this paper, we collect data on the model hub and analyze the characteristics of the model hub and the AI models provided. The results of this research can be of great help in developing various multimodal AI models in the future, utilizing AI models in various fields, and building services by fusing various AI models.

Countermeasures for Security Threats by Smart Factory Area based on Federated Learning (연합학습 기반 스마트팩토리 영역별 보안위협 대응방안)

  • In-Su Jung;Deuk-Hun Kim;Jin Kwak
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.333-336
    • /
    • 2024
  • 스마트팩토리는 기존 제조산업에 ICT 기술이 융합된 지능형 공장이다. 이는 IT(Information Technology)영역과 OT(Operation Technology)으로 구분되고, 영역 간 연결을 통해 제조공정 자동화 및 지능화를 수행한다. IT영역은 외부 네트워크와 연결되어 스마트팩토리의 전사업무 관리를 수행하며, OT영역은 폐쇄망 네트워크로 구성되어 직접적인 제조과정을 수행한다. 이는 2개의 영역으로 구분되어 자동화 및 지능화된 제조공정 과정을 수행함에 따라 구조가 복잡해지고 있으며, 이로 인해 스마트팩토리 보안위협이 발생 가능한 공격 표면이 증가하고 있다. 이에 대응하기 위해서는 스마트팩토리 IT영역과 OT영역의 특징을 분석하고, 영역별 적합한 보안위협 대응체계를 수립해야 한다. 이에 따라, 본 논문에서는 다수의 장치에 대한 학습이 용이하고, 세부적으로 학습기법을 구분할 수 있는 연합학습을 활용하여 스마트팩토리 영역별 적합한 보안위협 대응방안을 제안한다.

Machine Learning for Predicting Entrepreneurial Innovativeness (기계학습을 이용한 기업가적 혁신성 예측 모델에 관한 연구)

  • Chung, Doo Hee;Yun, Jin Seop;Yang, Sung Min
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.3
    • /
    • pp.73-86
    • /
    • 2021
  • The primary purpose of this paper is to explore the advanced models that predict entrepreneurial innovativeness most accurately. For the first time in the field of entrepreneurship research, it presents a model that predicts entrepreneurial innovativeness based on machine learning corresponding to data scientific approaches. It uses 22,099 the Global Entrepreneurship Monitor (GEM) data from 62 countries to build predictive models. Based on the data set consisting of 27 explanatory variables, it builds predictive models that are traditional statistical methods such as multiple regression analysis and machine learning models such as regression tree, random forest, XG boost, and artificial neural networks. Then, it compares the performance of each model. It uses indicators such as root mean square error (RMSE), mean analysis error (MAE) and correlation to evaluate the performance of the model. The analysis of result is that all five machine learning models perform better than traditional methods, while the best predictive performance model was XG boost. In predicting it through XG boost, the variables with high contribution are entrepreneurial opportunities and cross-term variables of market expansion, which indicates that the type of entrepreneur who wants to acquire opportunities in new markets exhibits high innovativeness.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.