• Title/Summary/Keyword: ICT investment management

Search Result 62, Processing Time 0.017 seconds

Current States of the Global Water Market and Considerations for the Groundwater Industry in South Korea (물 시장의 현주소와 지하수 산업에 대한 고찰)

  • Kim, Byung-Woo;Koh, Yong-Kwon;Choi, Doo-Houng;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • Since the establishment of the Groundwater Act in Korea in 1993, the national policy on groundwater has focused on the preservation and management of groundwater, which should be used only as a subsidiary water resource. However, population growth, increased water demand, climate change, and the need for uniform water distribution have brought changes to groundwater policy, and have led to the prioritization of development projects such as groundwater dams and river bank filtration. Population growth, changes to the water environment, and increased water risks have all played a role in triggering rapid growth within the water industry; the size of the investment in water resources will also continue to increase worldwide. Until now, private wells and bottled mineral water have led the groundwater industry in South Korea. However, a new area of the groundwater industry, which includes the health and medical sciences, employs groundwater properties derived from regional geology, and is growing. This requires the advancement of groundwater research and technical development connected with ICT (Information and Communication Technology) and medical science, and that the public development of groundwater and its various applications is expanded through locating groundwater in the core of the water industry cluster.

The Comparison of Basic Science Research Capacity of OECD Countries

  • Lim, Yang-Taek;Song, Choong-Han
    • Journal of Technology Innovation
    • /
    • v.11 no.1
    • /
    • pp.147-176
    • /
    • 2003
  • This Paper Presents a new measurement technique to derive the level of BSRC (Basic Science and Research Capacity) index by use of the factor analysis which is extended with the assumption of the standard normal probability distribution of the selected explanatory variables. The new measurement method is used to forecast the gap of Korea's BSRC level compared with those of major OECD countries in terms of time lag and to make their international comparison during the time period of 1981∼1999, based on the assumption that the BSRC progress function of each country takes the form of the logistic curve. The US BSRC index is estimated to be 0.9878 in 1981, 0.9996 in 1990 and 0.99991 in 1999, taking the 1st place. The US BSRC level has been consistently the top among the 16 selected variables, followed by Japan, Germany, France and the United Kingdom, in order. Korea's BSRC is estimated to be 0.2293 in 1981, taking the lowest place among the 16 OECD countries. However, Korea's BSRC indices are estimated to have been increased to 0.3216 (in 1990) and 0.44652 (in 1999) respectively, taking 10th place. Meanwhile, Korea's BSRC level in 1999 (0.44652) is estimated to reach those of the US and Japan in 2233 and 2101, respectively. This means that Korea falls 234 years behind USA and 102 years behind Japan, respectively. Korea is also estimated to lag 34 years behind Germany, 16 years behind France and the UK, 15 years behind Sweden, 11 years behind Canada, 7 years behind Finland, and 5 years behind the Netherlands. For the period of 1981∼1999, the BSRC development speed of the US is estimated to be 0.29700. Its rank is the top among the selected OECD countries, followed by Japan (0.12800), Korea (0.04443), and Germany (0.04029). the US BSRC development speed (0.2970) is estimated to be 2.3 times higher than that of Japan (0.1280), and 6.7 times higher than that of Korea. German BSRC development speed (0.04029) is estimated to be fastest in Europe, but it is 7.4 times slower than that of the US. The estimated BSRC development speeds of Belgium, Finland, Italy, Denmark and the UK stand between 0.01 and 0.02, which are very slow. Particularly, the BSRC development speed of Spain is estimated to be minus 0.0065, staying at the almost same level of BSRC over time (1981 ∼ 1999). Since Korea shows BSRC development speed much slower than those of the US and Japan but relative]y faster than those of other countries, the gaps in BSRC level between Korea and the other countries may get considerably narrower or even Korea will surpass possibly several countries in BSRC level, as time goes by. Korea's BSRC level had taken 10th place till 1993. However, it is estimated to be 6th place in 2010 by catching up the UK, Sweden, Finland and Holland, and 4th place in 2020 by catching up France and Canada. The empirical results are consistent with OECD (2001a)'s computation that Korea had the highest R&D expenditures growth during 1991∼1999 among all OECD countries ; and the value-added of ICT industries in total business sectors value added is 12% in Korea, but only 8% in Japan. And OECD (2001b) observed that Korea, together with the US, Sweden, and Finland, are already the four most knowledge-based countries. Hence, the rank of the knowledge-based country was measured by investment in knowledge which is defined as public and private spending on higher education, expenditures on R&D and investment in software.

  • PDF