Recently, several ICT-based cat studies have produced some successful results, according to academic and industry sources. However, research on the level of simply identifying the cat's condition, such as the behavior and sound classification of cats based on images and sound signals, has yet to be found. In this paper, based on the veterinary scientific knowledge of cats, a practical and academic cat monitoring and disease diagnosis system is proposed to monitor the health status of the cat 24 hours a day by automatically categorizing and analyzing the behavior of the cat with location information using LSTM with a beacon sensor and a raspberry pie that can be built at low cost. Validity of the proposed system is verified through experimentation with cats in actual custody (the accuracy of the cat behavior classification and location identification was 96.3% and 92.7% on average, respectively). Furthermore, a rule-based disease analysis system based on the veterinary knowledge was designed and implemented so that owners can check whether or not the cats have diseases at home (or can be used as an auxiliary tool for diagnosis by a pet veterinarian).
연구목적: 본 연구는 군에서 가장 많이 발생하는 교통사고의 예방을 위해 부대별로 교통사고가 발생할 확률을 사전에 예측하는 모형의 개발 방안을 제시하는 것이다. 연구방법: 이를 위해 CRISP-DM(Cross Industry Standard Process for Data Mining) 방법론을 적용하였다. CRISP-DM 프로세스는 6단계로 구성되어 있고, 각 단계는 Waterfall Model처럼 일방향으로 구성되어 있지 않고 단계 간 피드백을 통하여 단계별 완성도를 높이게 되어 있다. 연구결과:전체 집단을 대상으로 기 구축된 사고조사 데이터와 동일한 데이터 세트(data set)를 구축하여 모델링한 결과 분류기준 0.5로 했을 때, 교통사고예측을 위한 모형의 정확도, 특이도, 민감도, AUC에서 의미있는 결과치를 도출하였다. 결론: 예측모형을 설계하는 과정에서 데이터의 부족으로 인해 의미 있는 예측값을 얻기 어려운 문제점이 확인되었다. 이를 해결하기 위해 합리적 추론이 가능한 데이터 세트(data set)를 재구성 및 확대하여 데이터 부족을 해소하고, 이를 활용한 예측모형을 설계할 수 있는 방법론을 제시하였다.
Due to the convergence and complexity of the 4th Industrial Revolution, the boundaries between industries have become unclear and ambiguous. Consequently, there is a lack of research on how firms engaged in this industry are changing their location behavior. Recently, some attempts to classify the industrial groups of the 4th Industrial Revolution and their detail occupations have been made, and this study adopts the classification of Lee and Jung (2020) of the Korea Institute for Industrial Economics & Trade. In this study, the 18 detailed industries commonly included in multiple industrial groups are defined as 'core industries' and are classified into manufacturing and service industries to explore the spatial patterns of firms' location. Specifically, this study aims to examine how the location behavior of firms in core industries of the 4th Industrial Revolution has changed from 2010 to 2019 in the Seoul metropolitan area, using the 「National Business Survey」 data. We employed two methods based on spatial auto-correlation: (i) spatial kernel density estimation analysis and (ii) local Moran's Ii analysis. The results indicate that the core industry firms form more distinct and larger clusters in 2019 based on the clusters formed in 2010. Specifically, manufacturing industry firms tended to concentrate in the southern region of Gyeonggi and parts of Seoul, while serivce industry firms were more concentrated in Seoul. These core industries play a critical role in industries and are closely related to the ICT industries, which generate high-added value and increase productivity in the front and rear industries. This study reveals that the agglomeration of these industries in specific regions is intensifying and may exacerbate regional inequality.
주요 구인구직사이트의 직무분류체계가 사이트마다 상이하고 SW분야에서 제안한 'SQF(Sectoral Qualifications Framework)'의 직무분류체계와도 달라 SW산업에서 SW기업, SW구직자, 구인구직사이트가 모두 납득할 수 있는 새로운 직무분류체계가 필요하다. 본 연구의 목적은 주요 구인구직사이트의 구인정보와 'NCS(National Competaency Standars)'에 기반을 둔 SQF를 분석하여 시장 수요를 반영한 표준 직무분류체계를 구축하는 것이다. 이를 위해 주요 구인구직사이트의 직종 간 연관분석과 SQF와 직종 간 연관분석을 실시하여 직종 간 연관규칙을 도출하고자 한다. 이 연관규칙을 이용하여 주요 구인구직사이트의 직무분류체계를 맵핑하고 SQF와 직무 분류체계를 맵핑함으로써 데이터 기반의 지능형 직무분류체계를 제안하였다. 연구 결과 국내 주요 구인구직사이트인 '워크넷,' '잡코리아,' '사람인'에서 3만여 건의 구인정보를 open API를 이용하여 XML 형태로 수집하여 데이터베이스에 저장했다. 이 중 복수의 구인구직사이트에 동시 게시된 구인정보 900여 건을 필터링한 후 빈발 패턴 마이닝(frequent pattern mining)인 Apriori 알고리즘을 적용하여 800여 개의 연관규칙을 도출하였다. 800여 개의 연관규칙을 바탕으로 워크넷, 잡코리아, 사람인의 직무분류체계와 SQF의 직무분류체계를 맵핑하여 1~4차로 분류하되 분류의 단계가 유연한 표준 직무분류체계를 새롭게 구축했다. 본 연구는 일부 전문가의 직관이 아닌 직종 간 연관분석을 통해 데이터를 기반으로 직종 간 맵핑을 시도함으로써 시장 수요를 반영하는 새로운 직무분류체계를 제안했다는데 의의가 있다. 다만 본 연구는 데이터 수집 시점이 일시적이기 때문에 시간의 흐름에 따라 변화하는 시장의 수요를 충분히 반영하지 못하는 한계가 있다. 계절적 요인과 주요 공채 시기 등 시간에 따라 시장의 요구하는 변해갈 것이기에 더욱 정확한 매칭을 얻기 위해서는 지속적인 데이터 모니터링과 반복적인 실험이 필요하다. 본 연구 결과는 향후 SW산업 분야에서 SQF의 개선방향을 제시하는데 활용될 수 있고, SW산업 분야에서 성공을 경험삼아 타 산업으로 확장 이전될 수 있을 것으로 기대한다.
오늘날 기술융합과 산업융합과 같은 융합이라는 용어는 우리사회에서 중요한 화두중의 하나로 떠오르고 있다. 그러나 이를 체계적으로 정량적인 지표로 측정하려는 시도는 많이 부족한 실정이다. 이에 본 연구에서는 특허자료를 이용하여 산업별융합계수를 측정하고, 융합계수에 기반 하여 어떠한 산업에서 융합이 심화되고 있는지를 분석하는 것을 그 목적으로 한다. 이를 위해 먼저 2011년부터 2015년까지 한국특허청에 출원된 국내특허를 대상으로 하여 산업별융합계수를 측정하였다. 연구결과 연구기간동안 특허가 가장 많이 출원된 산업은 사무용기기 및 컴퓨터제조업, 전기제품제조업, 신호전송 및 통신업 등의 범 ICT산업군 이었으며, 동기간 전체산업의 융합계수는 0.316(239,664/758,446)로 나타났다. 또한 산업융합계수가 가장 높은 산업 순으로는 인조섬유(0.918), 도장(0.597), 석유제품(0.588), 기타화합물(0.567), 섬유제품(0.555), 기타운송장비(0.549), 생산관리(0.532) 등으로 나타났다. 추가로 특허출원건수가 많은 산업중심으로 같은 분석을 실시한 결과 광학기기제조업, 기초화합물제조업, 조립금속산업, 정밀/측정기기제조업, 특수목적용기계제조업분야에서 융합이 활발하게 이루어지고 있으며, 이들 산업들은 주로 사무용기기 및 컴퓨터제조업, 특수목적용기계제조업, 정밀/측정기기제조업과 서로 융합이 이루어지고 있는 것으로 나타나고 있다.
ICT(Information and Communications Technologies : 정보통신기술)는 창조경제의 핵심이 되는 기술중 하나로 기존산업과 기업의 인프라를 연결하는 매개로 사용되어 기존 상품과 서비스를 고도화하고, 새로운 상품과 서비스를 만들어내고 있다. 이와 더불어 빅데이터, 모바일, 웨어러블 등 새로운 디바이스 부문까지 주목을 받으며 신시장 개척에 귀추가 주목되고 있다. 더 나아가 IoT(Internet of Things :사물인터넷)는 인간과 인간, 인간과 사물, 사물과 사물을 연결하며 ICT기반의 사회를 더욱 곤고히 만들어 주는 역할을 하고 있다. 이는 제조업 중심의 하드웨어 개발이 소프트웨어의 개발과 함께 동시다발적으로 융합되어야 한다는 의미로 볼 수 있다. 하드웨어와 소프트웨어의 융합에서 꼭 필요한 것이 OS인데, 선두주자 구글과 애플을 필두로 관련 기업에서는 소프트웨어의 중요성을 인지하고 소프트웨어 개발에 집중 착수하였다. 이에 현 보고서(한국산업기술평가관리원: 디자인전문기술개발사업) 진행을 위해 소프트웨어 시장현황을 조사한 결과, 소프트웨어 플랫폼을 기반으로 한 구글의 안드로이드(Android)와 애플의 iOS가 전 세계시장을 장악하고 있었으며, 후발주자는 새로운 패러다임을 제시하기 위해 Web기반 OS, 유사 OS 등 을 출시하여 다양한 경로에서 시장진입을 시도하고 있다. 이러한 사회의 변화는 OS를 기본으로 누구나 개발자가 될 수 있는 스마트콘텐츠 활용에 대한 연구 필요성이 대두되었으며 범용적으로 활용할 수 있는 스마트콘텐츠에 대한 정의가 필요하며 빠른 시장변화에 대처할 수 있는 시장분석이 필요하다. 이에 본 연구에서는 문헌조사 및 스마트분류체계에 따른 앱마켓(App Market)분석, 현 콘텐츠시장 트랜드 분석을 실시하였고 스마트콘텐츠의 범용적 정의와 앱마켓에서 나타난 애플리케이션의 현황과 콘텐츠 시장현황을 비교하여 공통요소 5가지의 흐름을 파악하였다. 분석을 통하여 스마트콘텐츠 시장은 독립적이지만 서로의 연결고리를 가진 형태로 하나의 유기체와 같은 형태로 발전할 것이라 예상하였으며 기존의 기술적 관점, 문화적 관점, 비즈니스적 관점, 소비자 관점에 사회적 관점을 포함한 다시점 관점에서의 분류체계와 개발이 이루어 져야 한다.
Objective: This study is aimed at investigating indoor air quality on public transportation (subway, train, and bus) according to changes in season and time. Methods: We evaluated TVOC and HCHO on public transportation based on the un-controlled parameters of the Ministry of Environment. We also measured temperature and humidity since they affect the concentration of TVOC and HCHO. For public transportation classification, subway lines were classified into Lines 1 to 4. Additionally, trains were classified as ITX and KTX. Results: When comparing summer and winter on public transportation, the concentrations of TVOC and HCHO did not show any particular tendency. However, the concentrations of TVOC and HCHO during traffic congestion was higher than levels during times of non-congestion on most public transportation. In summer and winter, the measurement results for temperature and humidity showed a normal range, so temperature and humidity did not affect the concentrations of TVOC and HCHO. In the case of TVOC, TVOC concentrations on new trains were found to be relatively higher than on older ones, but there was no statistically correlation. Conclusions: A survey was conducted on the indoor air quality on public transportation. This study also analyzed data based on TVOC and HCHO for designing policies and managing indoor air quality.
4차 산업의 발전과 고성능의 컴퓨팅 환경 구축으로 다양한 산업분야에서 인공지능이 적용되고 있다. 의료분야에서는 X-Ray, MRI, PET 등의 의료 영상 및 임상 자료를 이용하여 암, COVID-19, 골 연령 측정 등의 딥 러닝 학습이 진행되었다. 또한 스마트 의료기기, IoT 디바이스와 딥 러닝 알고리즘을 적용하여 ICT 의료 융합 기술 등이 연구되고 있다. 이러한 기술 중 의료 영상 기반 딥 러닝 학습은 의료 영상의 바이오마커를 정확히 찾아내고, 최소한의 손실률과 높은 정확도가 필요하다. 따라서 본 논문은 흉부 X-Ray 이미지 기반 딥 러닝 학습 과정에서 손실률을 도출하는 손실 함수 중 영상분류 알고리즘에서 사용되는 Cross-Entropy 함수들의 성능을 비교·분석하고자 한다.
우리나라의 중소기업은 전체 사업체 수의 99.8%, 종사자 비중의 87.8%, 전체 생산액의 48.4%를 차지하는 등 국가경제의 근간을 형성하고 있으며, 고용창출, 기술혁신, 산업의 다양성, 지역균형개발 등 여러 측면에서 국민경제 발전에 있어서 실질적인 원동력이 되고 있다. 이로 인해 중소기업은 기술혁신을 통해서 기술역량을 확보하는 것이 더욱더 필요해졌다. 하지만 대부분의 중소기업은 자금부담 능력은 물론 R&D인력, 연구장비 등 R&D 역량이 대체적으로 부족한 실정이다. 이에 정부에서는 중소기업 지원을 위해서 정부 출연(연)을 통해 다양한 정책적 지원을 강화하고 있다. 즉, 정부출연연구소는 산업 전반의 혁신활동을 증진시키고, 기업의 기술역량을 강화하기 위해 R&D를 통해 창출된 지식과 기술을 꾸준히 시장에 제공하고 있으며, 중소 중견기업이 견실한 기업으로 도약할 수 있도록 인력지원, 장비지원/연구시설 등을 통해 기업들을 지원하는 역할을 수행하고 있다. 특히 중소기업은 국민경제에서 차지하는 비중이 높을 뿐만 아니라 정치, 경제적인 면에서도 그 영향력이 커서 중소기업의 경쟁력 제고는 지속적인 경제 성장을 위해 반드시 달성해야 할 국가적인 주요 정책목표가 되고 있다. 이러한 이유로 중소기업의 경쟁력 제고를 위해 기업을 둘러싸고 있는 환경, 전략, 조직문화 등과 같은 추상화된 개념들 사이의 관계를 구체적으로 살펴볼 필요가 있다. 본 연구는 중소 벤처기업이 지속적인 경쟁력을 유지하기 위해 외부환경과 전략, 조직구조의 일치성(fit)을 추구할 때, 중소 벤처기업의 업종별, 영업형태별로 어떠한 조직문화가 기업성과(영업이익)에 유의미한 영향을 미치는지 알아보고자 665개 기업을 대상으로 실증분석을 하였다. 삼원분산분석(3-way ANOVA)을 통해 기업성과(영업이익)에 대한 중소 벤처기업의 업종, 영업형태, 조직문화의 주효과 및 상호작용효과를 검증한 결과, 중소 벤처기업의 업종은 통계적으로 유의미한 주효과가 있는 것으로 나타났으나, 영업형태와 조직문화는 유의미한 영향을 미치지 않는 것으로 나타났다. 또한 중소 벤처기업의 세 가지 독립변수 간의 상호작용효과를 분석한 결과, 업종, 영업형태, 조직문화 간에는 통계적으로 유의미한 상호작용효과가 있는 것으로 나타났다. 구체적으로 살펴보면, ICT 서비스의 경우, B2B 기업은 관계지향적 문화, B2C 기업은 위계지향적 문화, ICT 기기의 경우는 B2B와 B2C 기업 모두 과업지향적 문화에서 기업성과가 상대적으로 높게 나타났으며, SW 기타의 경우, B2B와 B2C 기업 모두 위계지향적 문화에서 기업성과가 상대적으로 높게 나타났다. 이는 기업의 업종과 영업형태별로 적합한 조직문화가 존재한다는 것을 보여주고 있어, 향후 중소 벤처기업의 육성 및 기업성과와 관련된 촉진정책을 수립할 때 의미 있는 기초자료로 활용될 것으로 기대된다.
근례 무인화의 발전은 계속되고 있고, AI무인화의 발전은 산업, 복지, 인력등 인력으로 해결해 오던 작업들을 좀더 인력보다 효율적이고 정확하고 신속하게하는 것을 목표로 하고 있다. AI무인화 기술은 다양한 곳에서 발전하고 있는데 이중 많은 산업체나 공장에서 무인화 시스템으로 대대적 전환하는 시점이다. 우리는 이 점을 착안하여 대형 과수원에서 한번에 레일이 쏟아져 들어오는 과일들을 인력이 아닌 인공지능(AI) 핵심 기술중 하나인 Deep Learning 기술을 활용하여 대형 과수원에서 사람이 직접 과일을 분류하지 않아도 자동화 기계가 과일을 종류별, 등급별로 나누어 원산지와 품종 등급별로 나누어 많은 인력을 소비하지 않고 관리자의 감독하에 가동가능한 무인화 과일 분류 기계를 연구하고자 한다. 이러한 무인 자동화 분류 시스템은 인력을 최소한으로 줄여 인건비를 줄이고, 사람이 할 수 있는 실수나 오류들을 최소한으로 줄여 일의 효율성을 증진시킬 수 있도록 하는 것을 목표로 본 연구를 진행하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.