• Title/Summary/Keyword: ICRP pediatric reference phantoms

Search Result 3, Processing Time 0.016 seconds

Implication of ICRP pediatric reference voxel phantoms on dose assessment of patients in radioiodine therapy

  • Soo Min Lee;Chansoo Choi;Ji Won Choi;Chul Hee Min;Seulki Ko;Bangho Shin;Chan Hyeong Kim;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2247-2257
    • /
    • 2024
  • To investigate the impact of the recently released pediatric reference voxel phantoms (0-, 1-, 5-, 10-, 15-year-old males and females) of the International Commission on Radiological Protection (ICRP) on organ dose estimates for radioactive iodine (RAI) treatment in pediatric patients, we calculated and analyzed pediatric-specific iodine131 S values (rT ← thyroid) for the 30 radiosensitive organs by conducting Monte Carlo simulations using the Geant4. The gender dependency in the S values was frequently seen for the 15-year-old phantoms with higher S values of female than male. In addition, the age dependency in the S values was observed for most target organs; that is, the S values tend to decrease for older ages (e.g., ~120 times for the gonads between the adult and newborn) due mainly to the inter-organ distances generally longer for older ages. Moreover, we observed that the iodine-131 S values tend to be significantly greater by up to ~145.5 times than those of the stylized phantoms that have been widely used for organ dose estimates of pediatric RAI patients. We believe that the pediatric-specific iodine-131 S values (rT ← thyroid) of the ICRP pediatric reference voxel phantoms should be beneficial to improve the dosimetry of pediatric RAI patients.

New thyroid models for ICRP pediatric mesh-type reference computational phantoms

  • Yeon Soo Yeom ;Chansoo Choi ;Bangho Shin ;Suhyeon Kim ;Haegin Han ;Sungho Moon ;Gahee Son;Hyeonil Kim;Thang Tat Nguyen;Beom Sun Chung;Se Hyung Lee ;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4698-4707
    • /
    • 2022
  • As part of the ICRP Task Group 103 project, we developed ten thyroid models for the pediatric mesh-type reference computational phantoms (MRCPs). The thyroid is not only a radiosensitive target organ needed for effective dose calculation but an important source region particularly for radioactive iodines. The thyroid models for the pediatric MRCPs were constructed by converting those of the pediatric voxel-type reference computational phantoms (VRCPs) in ICRP Publication 143 to a high-quality mesh format, faithfully maintaining their original topology. At the same time, we improved several anatomical parameters of the thyroid models for the pediatric MRCPs, including the mass, overlying tissue thickness, location, and isthmus dimensions. Absorbed doses to the thyroid for the pediatric MRCPs for photon external exposures were calculated and compared with those of the pediatric VRCPs, finding that the differences between the MRCPs and VRCPs were not significant except for very low energies (<0.03 MeV). Specific absorbed fractions (target ⟵ thyroid) for photon internal exposures were also compared, where significant differences were frequently observed especially for the target organs/tissues close to the thyroid (e.g., a factor of ~1.2-~327 for the thymus as a target) due mainly to anatomical improvement of the MRCP thyroid models.

Organ Dose Conversion Coefficients Calculated for Korean Pediatric and Adult Voxel Phantoms Exposed to External Photon Fields

  • Lee, Choonsik;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Lee, Ae-Kyoung;Choi, Hyung-do
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.69-75
    • /
    • 2020
  • Background: Dose conversion coefficients (DCCs) have been commonly used to estimate radiation-dose absorption by human organs based on physical measurements of fluence or kerma. The International Commission on Radiological Protection (ICRP) has reported a library of DCCs, but few studies have been conducted on their applicability to non-Caucasian populations. In the present study, we collected a total of 8 Korean pediatric and adult voxel phantoms to calculate the organ DCCs for idealized external photon-irradiation geometries. Materials and Methods: We adopted one pediatric female phantom (ETRI Child), two adult female phantoms (KORWOMAN and HDRK Female), and five adult male phantoms (KORMAN, ETRI Man, KTMAN1, KTMAN2, and HDRK Man). A general-purpose Monte Carlo radiation transport code, MCNPX2.7 (Monte Carlo N-Particle Transport extended version 2.7), was employed to calculate the DCCs for 13 major radiosensitive organs in six irradiation geometries (anteroposterior, posteroanterior, right lateral, left lateral, rotational, and isotropic) and 33 photon energy bins (0.01-20 MeV). Results and Discussion: The DCCs for major radiosensitive organs (e.g., lungs and colon) in anteroposterior geometry agreed reasonably well across the 8 Korean phantoms, whereas those for deep-seated organs (e.g., gonads) varied significantly. The DCCs of the child phantom were greater than those of the adult phantoms. A comparison with the ICRP Publication 116 data showed reasonable agreements with the Korean phantom-based data. The variations in organ DCCs were well explained using the distribution of organ depths from the phantom surface. Conclusion: A library of dose conversion coefficients for major radiosensitive organs in a series of pediatric and adult Korean voxel phantoms was established and compared with the reference data from the ICRP. This comparison showed that our Korean phantom-based data agrees reasonably with the ICRP reference data.