• Title/Summary/Keyword: ICP etching

Search Result 297, Processing Time 0.024 seconds

Reactive Ion Etching of GaN Using $BCI_3/H_2/Ar$ Inductively Coupled Plasma ($BCI_3/H_2/Ar$ 유도결합 플라즈마를 이용한 GaN의 건식 식각에 관한 연구)

  • Kim, Sung-Dae;Jung, Seog-Yong;Lee, Byung-Taek;Huh, Jeung-Soo
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.179-183
    • /
    • 2000
  • The reactive ion etching process of GaN using $BCI_3/H_2/Ar$ high density inductively coupled plasma was investigated. Results showed that both of the etch rate and the sidewall verticality significantly increased as the ICP power, bias voltage, and the $BCI_3$ ratio were increased whereas effects of the other variables were minimal. The maximum etch rate of about 175nm/min was obtained at the condition of ICP power 900W, bias voltage 400V, 4mTorr, and 60% $BCI_3$, which resulted in reasonably smooth etched surface. Etch residues were observed in the case of samples etched at the low bias conditions, which were proposed to be as the $GaCI_x$ compounds.

  • PDF

Fabrication of the Superconducting Flux Flow Transistor Using the ICP Etching Method (ICP 장치를 이용한 초전도 자속 흐름 트랜지스터의 링크 제작)

  • Gang, Hyeong-Gon;Im, Yeon-Ho;Im, Seong-Hun;Choe, Hyo-Sang;Han, Yun-Bong;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.494-499
    • /
    • 2001
  • The effects of accelerated Ultraviolet (UV) radiation on High temperature vulcanized (HTV), Room temperature vulcanized (RTV) silicone rubber and two types of ethylene propylene diene terpolymer (EPDM) used for composite insulator were investigated by hydrophobicity class (HC), surface voltage decay after corona charging, SEM-ES, FTIR and XPS. The contact angle in two kinds of silicone rubber was scarcely change, but EPDM occurred to the loss of hydrophobicity followed by surface cracking and chalking. The surface voltage decay on UV-treated silicone rubber and EPDM showed a different decay trend with UV treatment. EDS and XPS analysis indicated that the oxygen content increased with UV treatment time in all samples. For silicone rubber, the oxidized groups of inorganic silica-like structure increased with UV treatment time. The oxidized carbon of C=O, O=C-O in EPDM increased. These oxidized surface for each material had different electrostatic characteristics, so deposited charges were expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results was discussed.

  • PDF

Plasma Uniformity Control Technology for Dry Etching (ICP Dry etcher) Equipment for Medium and Large Displays (중·대형 디스플레이용 건식 식각(ICP Dry etcher) 설비의 플라스마 균일도 제어 기술)

  • Hong, Sung Jae;Jeon, Honggoo;Yang, Ho Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.125-129
    • /
    • 2022
  • The current display technology tends to be highly integrated with high resolution, the element size is gradually downsized, and the structure becomes complicated. Inductively coupled plasma (ICP) dry etcher of various types of etching equipment is a structure that places a large multi-divisional antenna source on the top lid, passes current to the Antenna, and generates plasma using the induced magnetic field generated at this time. However, in the case of a device of a large area size, a support that can withstand a load structurally is necessary, and when these support portions are applied, arrangement of antenna becomes difficult, which causes reduction in uniformity. As described above, the development of antenna source of a large area having a uniform plasma density on the whole surface is difficult to restrict hardware (H/W). As a solution to this problem, we confirmed the change in uniformity of plasma by applying two kinds of specific shape faraday shield(FICP) to the lower part of the large area upper lid antenna of 6 and 8th more than that generation size. In this thesis, we verify the faraday shield effect which can improve plasma uniformity control of ICP dry etcher equipment applied to medium and large displays.

The Development of Silylated Photoresist Etch Process by Enhanced- Inductively Coupled Plasma (Enhanced-Inductively Coupled Plasma (E-ICP)를 이용한 Silylated photoresist 식각공정개발)

  • 조수범;김진우;정재성;오범환;박세근;이종근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.227-232
    • /
    • 2002
  • The silylated photoresist etch process was tested by enhanced-ICP. The comparison of the two process results of micro pattern etching with $0.35\mu\textrm{m}$ CD by E-ICP and ICP reveals that I-ICP has bettor quality than ICP. The etch rate and the RIE lag effect was improved in E-ICP. Especially, the problem of the lateral etch was improved in E-ICP.

The etching characteristics of $(Ba_{0.6}Sr_{0.4})TiO_{3}$ film Using $Ar/CF_{4}$ Inductively Coupled Plasma ($Ar/CF_{4}$ 유도결합 플라즈마로 식각된 $(Ba_{0.6}Sr_{0.4})TiO_{3}$ 박막의 특성분석)

  • Kang, Pill-Seung;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il;Lee, Soo-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.16-19
    • /
    • 2002
  • (Ba,Sr)TiO3(BST) thin film is an attractive material for the application in high-density dynamic random access memories (DRAMs) because of the high relative dielectric constant and small variation in dielectric properties with frequency. In this study, (Ba0.6,Sr0.4)TiO3 thin films on Pt/Ti/SiO2/Si substrates were deposited by a sol-gel method and the CF4/Ar inductively coupled plasma (ICP) etching behavior of BST thin films had been investigatedby varying the process parameters such as chamber pressure, ICP power, and substrate bias voltage. To analysis the composition of surface residue following etching BST films etched with different Ar/CF4 gas mixing ratio were investigated using x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometer (SIMS).

  • PDF

The Use of Inductively Coupled CF4/Ar Plasma to Improve the Etch Rate of ZrO2 Thin Films

  • Kim, Han-Soo;Woo, Jong-Chang;Joo, Young-Hee;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.12-15
    • /
    • 2013
  • In this study, we carried out an investigation of the etching characteristics (etch rate, and selectivity to $SiO_2$) of $ZrO_2$ thin films in a $CF_4$/Ar inductively coupled plasma (ICP) system. The maximum etch rate of 60.8 nm/min for $ZrO_2$ thin films was obtained at a 20 % $CF_4/(CF_4+Ar)$ gas mixing ratio. At the same time, the etch rate was measured as a function of the etching parameter, namely ICP chamber pressure. X-ray photoelectron spectroscopy (XPS) analysis showed efficient destruction of the oxide bonds by the ion bombardment, as well as an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch characteristics for the $CF_4$-containing plasmas.

The Etching of $HfO_2$ Thin Film as the ion Energy Distributions in the $BCl_3/Ar$ Inductively Coupled Plasma System ($BCl_3/Ar$ 유도 결합 플라즈마 시스템에서 이온 에너지 분포에 따른 $HfO_2$ 박막의 식각)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Jong-Gyu;Woo, Jong-Chang;Kang, Chan-Min;Kim, Chang-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.349-354
    • /
    • 2007
  • In this work, we investigated etching characteristics of $HfO_2$ thin film and Si using inductive coupled plasma(ICP) system. The ion energy distribution functions in an ICP system was analyzed by quadrupole mass spectrometer(QMS) with an electrostatic ion energy analyzer. The maximum etch rate of $HfO_2$ thin film is 85.5 nm/min at a $BCl_3/(BCl_3+Ar)$ of 20 % and decreased with further addition of $BCl_3$ gas. From the QMS measurements, the most dominant positive ion energy distributions(IEDS) showed a maximum at 20 % of $BCl_3$. These tendency was very similar to the etch characteristics. This result agreed with the universal energy dependency of ion enhanced chemical etching yields. And the maximum selectivity of $HfO_2$ over Si is 3.05 at a $O_2$ addition of 2 sccm into the $BCl_3/(BCl_3+Ar)$ of 20 % plasma.

Fabrication of the weak link with the the Transistor Characteristics in 77 K (77K에서 트랜지스터 특성을 나타내는 링크의 제작)

  • 강형곤;임성훈;고석철;주철원;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.921-926
    • /
    • 2001
  • The link for the Superconducting Flux Flow Transistor (SFFT) which is based on the flux flow has been fabricated by the ICP etching methods. The channel width and the thickness of the SFFT were a 3 ${\mu}$m and about 300 nm, respectively. The superconducting characteristic of the link was measured by the x-ray diffraction and the E.D.S.. The SFFT etched by ICP showed an I-V characteristic like the three terminal transistor.

  • PDF

Dry Etching of Polysilicon in Hbr/O2 Inductively Coupled Plasmas (Hbr/O2 유도결합 플라즈마를 이용한 폴리실리콘 건식식각)

  • 범성진;송오성;이혜영;김종준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Dry etch characteristics of polysilicon with HBr/O$_2$ inductively coupled plasma (ICP) have been investigated. We determined etch late, uniformity, etch profiles, and selectivity with analyzing the cross-sectional scanning electron microscopy images obtained from top, center, bottom, right, and left positions. The etch rate of polysilicon was about 2500 $\AA$/min, which meets with the mass production for devices. The wafer level etch uniformity was within $\pm$5 %. Etch profile showed 90$^{\circ}$ slopes without notches. The selectivity over photoresist was between 2:1∼4.5:1, depending on $O_2$ flow rate. The HBr-ICP etching showed higher PR selectivity, and sharper profile than the conventional Cl$_2$-RIE.

Fabrication of Superconducting Flux Flow Transistor using Plasma etching (플라즈마 식각을 이용한 초전도 자속 흐름 트랜지스터 제작)

  • 강형곤;임성훈;고석철;한윤봉;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.74-77
    • /
    • 2002
  • The channel of the superconducting Flux Flow Transistor has been fabricated with plasma etching method using ICP. The ICP conditions were 700 W of ICP power, 150 W of rf chuck power, 5 mTorr of the pressure in chamber and 1:1 of Ar : Cl$_2$, respectively. The channel etched by plasma gas showed superconducting characteristics of over 77 K and superior surface morphology. The critical current of SFFT was altered by varying the external applied current. As the external applied current increased from 0 to 12 mA, the critical current decreased from 28 to 22 mA. Then the obtained r$\sub$m/ values were smaller than 0.1Ω at a bias current of 40 mA. The current gain was about 0.5. Output resistance was below 0.2 Ω.

  • PDF