• Title/Summary/Keyword: ICP Etching

Search Result 297, Processing Time 0.025 seconds

F Ion-Assisted Effect on Dry Etching of GaAs over AlGaAs and InGaP (GaAs/AlGaAs와 GaAs/InGaP의 건식 식각 시 Flourine 이온의 효과)

  • Jang, Soo-Ouk;Park, Min-Young;Choi, Chung-Ki;Yoo, Seung-Ryul;Lee, Je-Won;Song, Han-Jung;Jeon, Min-Hyon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.164-165
    • /
    • 2005
  • The dry etch characteristics of GaAs over both AlGaAs and InGaP in planar inductively coupled $BCl_3$-based plasmas(ICP) with additions of $SF_6$ or $CF_4$ were studied. The additions of flourine gases provided enhanced etch selectivities of GaAs/AlGaAs and GaAs/InGaP. The etch stop reaction involving formation of involatile $AlF_3$ and $InF_3$ (boiling points of etch products: $AlF_3\sim1300^{\circ}C$, $InF_3$ > $1200^{\circ}C$ at atmosphere) were found to be effective under high density inductively coupled plasma condition. Decrease of etch rates of all materials was probably due to strong increase of flourine atoms in the discharge, which blocked the surface of the material against chlorine neutral adsorption. The process parameters were ICP source power (0 - 500 W), RF chuck power (0 - 30 W) and variable gas composition. The process results were characterized in terms of etch rate, selectivities of GaAs over AlGaAs and InGaP, surface morphology, surface roughness and residues after etching.

  • PDF

Photovoltaic Performance of Crystalline Silicon Recovered from Solar Cell Using Various Chemical Concentrations in a Multi-Stage Process (습식 화학 공정에 의한 태양전지로부터 고순도 실리콘 회수 및 이를 이용한 태양전지 재제조)

  • Noh, Min-Ho;Lee, Jun-Kyu;Ahn, Young-Soo;Yeo, Jeong-Gu;Lee, Jin-Seok;Kang, Gi-Hwan;Cho, Churl-Hee
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.697-702
    • /
    • 2019
  • In this study, using a wet chemical process, we evaluate the effectiveness of different solution concentrations in removing layers from a solar cell, which is necessary for recovery of high-purity silicon. A 4-step wet etching process is applied to a 6-inch back surface field(BSF) solar cell. The metal electrode is removed in the first and second steps of the process, and the anti-reflection coating(ARC) is removed in the third step. In the fourth step, high purity silicon is recovered by simultaneously removing the emitter and the BSF layer from the solar cell. It is confirmed by inductively coupled plasma mass spectroscopy(ICP-MS) and secondary ion mass spectroscopy(SIMS) analyses that the effectiveness of layer removal increases with increasing chemical concentrations. The purity of silicon recovered through the process, using the optimal concentration for each process, is analyzed using inductively coupled plasma atomic emission spectroscopy(ICP-AES). In addition, the silicon wafer is recovered through optimum etching conditions for silicon recovery, and the solar cell is remanufactured using this recovered silicon wafer. The efficiency of the remanufactured solar cell is very similar to that of a commercial wafer-based solar cell, and sufficient for use in the PV industry.

Etch Characteristics of TiN Thin Film with Addition Cl2 Gas in BCl3/Ar Plasma (BCl3/Ar 플라즈마에 Cl2 가스 첨가에 따른 TiN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1051-1056
    • /
    • 2008
  • In this study, the investigations of the TiN etching characteristics were carried out with addition of $Cl_2$ gas in an inductively coupled $BCl_3$-base plasma system. Dry etching of the TiN was studied by varying the etching parameters including $Cl_2$ gas addition ratio, RF power, DC-bias voltage and pressure. The etch rate of TiN thin film was maximum when the $Cl_2$ gas addition flow was 2 sccm with fixed other conditions. As the RF power DC-bias voltage were increased, the etch rate of TiN thin film showed increasing tendency. $BCl_3/Cl_2$/Ar plasmas were characterized by optical emission spectroscopy (OES) analysis. The chemical reaction on the surface of the etched TiN films was investigated with X-ray photoelectron spectroscopy (XPS).

Etching characteristics of BST thin films using $BCl_3/Cl_2$/Ar plasma ($BCl_3/Cl_2$/Ar 플라즈마를 이용한 BST 박막의 식각 특성)

  • Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il;Lee, Chul-In;Kim, Tae-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.322-325
    • /
    • 2003
  • BST thin films were etched with inductively coupled plasmas. A chemically assisted physical etch of BST was experimentally confirmed by ICP under various gas mixtures. After a 20 % addition of $BCl_3$ to the $Cl_2/Ar$ mixture, resulting in an increased the chemical effect. As a increases of RF power, substrate power, and substrate temperature, and decrease of working pressure, the ion energy flux and chlorine atoms density increased. The maximum etch rate of the BST thin films was 90.1 nm/min at the RF power, substrate power, working pressure, and substrate temperature were 700 W, 300 W, 1.6 Pa, and 20 $^{\circ}C$, respectively. It was proposed that sputter etching is dominant etching mechanism while the contribution of chemical reaction is relatively low due to low volatility of etching product.

  • PDF

Recovery of Etching Damage of Etched PZT Thin Film by Inductively Coupled Plasma (유도결합 플라즈마에 의해 식각된 PZT 박막의 식각 Damage 개선)

  • 강명구;김경태;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.551-556
    • /
    • 2001
  • In this work, the recovery of etching damage in the etched PZT thin film with $O_2$ annealing has been studied. The PZT thin films were etched as a function of Cl$_2$/Ar and additive CF$_4$ into Cl$_2$(80%) /Ar(20%). the etch rates of PZT thin films were 1600$\AA$/min at Cl$_2$(80%)/Ar(20%) and 1970 $\AA$/min at 30% additive Cf$_4$ into Cl$_2$(80%)/Ar(20%). In order to recover the characteristics of etched PZT thin films, the etched PZT thin films were annealed in $O_2$ atmosphere at various temperatures. From the hysteresis curves, ferroelectrical properties are improved by $O_2$ annealing process. The improvement of ferroelectric behavior is consistent with the increase of the (100) and (200) PZT phase revealed by x-ray diffraction (XRD). From x-ray photoelectron spectroscopy (XPS) analysis, intensities of Pb-O, Zr-O and Ti-O peak increase and the chemical residue peak is reduced by $O_2$ annealing. From the atomic force microscopy (AFM) images. it shows that the surface morphology of re-annealed PZT thin films after etching is improved.

  • PDF

The etching properties of MgO thin films in $Cl_2/Ar$ gas chemistry (유도 결합 플라즈마를 이용한 MgO 박막의 식각특성)

  • Koo, Seong-Mo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.734-737
    • /
    • 2004
  • The metal-ferroelectric-semiconductor (MFS) structure is widely studied for nondestructive readout (NDRO) memory devices, but conventional MFS structure has a critical problem. It is difficult to obtain ferroelectric films like PZT on Si substrate without interdiffusion of impurities such as Pb, Ti and other elements. In order to solve these problems, the metal-ferroelectric-insulator-semiconductor (MFIS) structure has been proposed with a buffer layer of high dielectric constant such as MgO, $Y_2O_3$, and $CeO_2$. In this study, the etching characteristics (etch rate, selectivity) of MgO thin films were etched using $Cl_2/Ar$ plasma. The maximum etch rate of 85 nm/min for MgO thin films was obtained at $Cl_2$(30%)/Ar(70%) gas mixing ratio. Also, the etch rate was measured by varying the etching parameters such as ICP rf power, dc-bias voltage, and chamber pressure. Plasma diagnostics was performed by Langmuir probe (LP) and optical emission spectroscopy (OES).

  • PDF

The study on dry etching characteristics of ZnO thin films using high density plasma (고밀도 플라즈마를 이용한 ZnO 박막의 식각 특성)

  • Heo, Keyong-Moo;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.174-174
    • /
    • 2010
  • In this article, the dry etching mechanism of ZnO thin films in $N_2/Cl_2$/Ar gas chemistry was investigated. The ZnO thin films were deposited on Si substrate using Atomic layer deposition. The etching experiments were performed by inductively coupled plasma system. The maximum etch rate was104.5 nm/min and the highest selectivity of ZnO over $SiO_2$ was 3.3. Etching rate was measured by surface profiler. And the chemical reaction on the surface of the etched ZnO thin films was investigated by x-ray photo electrons pectroscopy. As a result of XPS, $Zn2p_{3/2}$ peak shifted toward a higher binding energy and the O-O and N-O bond were obtained from the sample of ZnO thin film which after plasma treatment.

  • PDF

Electrical properties improvement of PZT thin films etched into $CF_4/(Cl_2+Ar)$ plasma (식각된 PZT 박막의 전기적 특성 개선에 관한 연구)

  • Koo, Seong-Mo;Kim, Dong-Pyo;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.13-17
    • /
    • 2004
  • The PZT thin films are well-known material that has been widely studied for ferroelectric random access memory (FRAM). We etched the PZT thin films by $CF_4/(Cl_2+Ar)$ plasma and investigated improvement in etching damage by $O_2$ annealing. PZT thin films were etched for 1 min in an ICP using a gas mixture of $Cl_2$(80%)/Ar (20%) with 30% $CF_4$ addition. The etching conditions were fixed at a substrate temperature of $30^{\circ}C$, an rf power of 700 W, a dc-bias voltage of -200 V and a chamber pressure of 2 Pa. To improve the ferroelectric properties of PZT thin films after etching, the samples were annealed for 10 min at various temperatures in $O_2$ atmosphere. After $O_2$ annealing, the remanent polarization, fatigue, and the leakage current were gradually recovered to the characteristics of the as-deposited film, according as the temperature increased.

  • PDF

Etching Characteristics of Gold Thin Films using Inductively Coupled CF4/CI2/Ar Plasma (CF4/CI2/Ar유도 결합 플라즈마에 의한 gold 박막의 식각특성)

  • 김창일;장윤성;김동표;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.564-568
    • /
    • 2003
  • The etching of Au thin films have been performed in an inductively coupled CF$_4$/Cl$_2$/Ar plasma. The etch rates were measured as CF$_4$ contents added from 0 to 30 % to Cl$_2$/Ar plasma, of which gas mixing ratio was fixed at 20%. Other parameters were fixed at an rf power of 700 W, a dc bias voltage of 150 V, a chamber pressure of 15 mTorr, and a substrate temperature of 3$0^{\circ}C$. The highest etch rate of the Au thin film was 3700 $\AA$m/min at a 10% additive CF$_4$ into Cl$_2$/Ar plasma. The surface reaction of the etched Au thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. XPS analysis indicated that Au reacted with Cl and formed Au-Cl, which is hard to remove on the surface because of its high melting point. The etching products could be sputtered by Ar ion bombardment.

Dry Etching Properties of TiO2 Thin Film Using Inductively Coupled Plasma for Resistive Random Access Memory Application

  • Joo, Young-Hee;Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.144-148
    • /
    • 2012
  • In this work, we investigated to the etching characteristics of $TiO_2$ thin film and the selectivity using the inductively coupled plasma system. The etch rate and the selectivity were obtained with various gas mixing ratios. The maximum etch rate of $TiO_2$ thin film was 61.6 nm/min. The selectivity of $TiO_2$ to TiN, and $TiO_2$ to $SiO_2$ were obtained as 2.13 and 1.39, respectively. The etching process conditions are 400 W for RF power, -150 V for DC-bias voltage, 2 Pa for the process pressure, and $40^{\circ}C$ for substrate temperature. The chemical states of the etched surfaces were investigated with X-ray photoelectron spectroscopy (XPS). Its analysis showed that the etching mechanism was based on the physical and chemical pathways in the ion-assisted physical reaction.