• Title/Summary/Keyword: ICI Cancellation

Search Result 39, Processing Time 0.025 seconds

Multiple Frequency Offsets Cancellation Scheme Based on Alamouti Coded OFDM for Distributed Antenna Systems in Selective Fading Channel (선택적 감쇄환경에서 분산안테나 간 주파수 오차 환경에 강인한 알라무티부호화 직교주파수분할다중방식 기반 간섭 제거기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1039-1044
    • /
    • 2013
  • We propose a cancellation algorithm based on Alamouti coded OFDM to mitigate ICI due to Frequency Offset (FO) between distributed antennas in the frequency selective fading channel. In the cancellation algorithm, the interference signal is estimated by using the initial detection symbol and then the estimated interference signal is subtracted from the received signal. As the accuracy of initial symbol increases, ICI cancellation becomes more significant. Therefore, the accuracy of the initial detection symbols is very important in the cancellation algorithm. The proposed scheme improves the accuracy of the initial detection symbol by employing an ICI self-cancellation scheme. The proposed cancellation scheme with only one iteration achieves better performance compared to the conventional cancellation schemes with many times iterations based on the conventional Alamouti coded OFDM.

Performance Analysis of OFDM Communication System Cancelling the ICI by Data Conversion Method (ICI를 Data Conversion 방식으로 상쇄하는 OFDM 통신시스템과 성능분석)

  • 허근재;이영선;유흥균;정두영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1191-1197
    • /
    • 2003
  • In the multi-carrier OFDM communication system, the inter-carrier-interference(ICI) produced by phase noise in the transceiver local oscillator makes a severe influence on the system performance. In this paper, a new ICI self-cancellation scheme in the data-conversion type is proposed to reduce effectively the ICI. Also, the common phase error(CPE), ICI and carrier to interference power ratio(CIR) are found by the linear approximation of the phase noise. Then, the proposed method is compared with the conventional OFDM to analyze the efficiency of system performance improvement. When the number of subcarriers is 64, there are respectively the SNR gain of 0.6 ㏈ in the phase noise variance of 0.3 with QPSK and 1.5 ㏈ in the phase noise variance of 0.1 with 16 QAM at BER=10$\^$-3/. As a result, the performance degradation by ICI can be effectively lowered in the proposed system with ICI self. cancellation scheme, compared with the conventional OFDM system.

Iterative Detection and ICI Cancellation for MISO-mode DVB-T2 System with Dual Carrier Frequency Offsets

  • Jeon, Eun-Sung;Seo, Jeong-Wook;Yang, Jang-Hoon;Paik, Jong-Ho;Kim, Dong-Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.702-721
    • /
    • 2012
  • In the DVB-T2 system with a multiple-input single-output (MISO) transmission mode, Alamouti coded orthogonal frequency division multiplexing (OFDM) signals are transmitted simultaneously from two spatially separated transmitters in a single frequency network (SFN). In such systems, each transmit-receive link may have a distinct carrier frequency offset (CFO) due to the Doppler shift and/or frequency mismatch between the local oscillators. Thus, the received signal experiences dual CFOs. This not only causes dual phase errors in desired data but also introduces inter-carrier interference (ICI), which cannot be removed completely by simply performing a CFO compensation. To overcome this problem, this paper proposes an iterative detection with dual phase errors compensation technique. In addition, we propose a successive-iterative ICI cancellation technique. This technique successively eliminates ICI in the initial iteration by exploiting pre-detected data pairs. Then, in subsequent iterations, it performs a fine interference cancellation using a priori information, iteratively fed back from the channel decoder. In contrast to previous works, the proposed techniques do not require estimates of dual CFOs. Their performances are evaluated via a full DVB-T2 simulator. Simulation results show that the DVB-T2 receiver equipped with the proposed dual phase errors compensation and the successive-iterative ICI cancellation techniques achieves almost the same performance as ideal dual CFOs-free systems, even for large dual CFOs.

An Interchannel Interference Self-Cancellation Scheme for the Orthogonal Frequency Division Multiplexing System (직교 주파수분할다중화 시스템을 위한 채널간간섭 자기소거법)

  • Chen, Huijie;Kang, Seog-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.729-736
    • /
    • 2018
  • Due to the frequency offset, interchannel interference (ICI) is occurred in the received symbols of the orthogonal frequency division multiplexing (OFDM) systems. The ICI self-cancellation (ICI-SC) technique appropriately adjusts the subchannel signal assignment of the OFDM symbols, thereby canceling the interference caused by other subchannels. The conventional adjacent symbol repetition (ASR) method can reduce the interference caused by remote subchannels. However, it may not mitigate or even increases the ICI produced by some nearest subchannels. To solve the problem, a new ASR based ICI-SC technique is proposed and its performance is analyzed in this paper. Here, a t-parameter obtained by the interference coefficients of 3 successive subchannels is applied. As a result, the proposed method has the same capability to reduce the influence of remote subchannels. However, it can reduce the ICI caused by the nearest subchannels significantly.

Hybrid Interference Cancellation for OFDMA Uplink in Time-Varying Fading Channels (시변 페이딩 채널에서 상향 직교 주파수 분할 다중 접속을 위한 혼합 간섭 제거 기법)

  • Song, Hyung-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.78-85
    • /
    • 2009
  • In time-varying multipath fading channels, orthogonal frequency division multiple access (OFDMA) uplink systems suffer severe performance degradation caused by inter-channel interference (ICI). In this paper, we propose a hybrid interference cancellation (HIC) for suppressing the degradation effect of ICI. The proposed HIC can achieve both exact interference cancellation and low detection complexity through efficient combination of parallel detection and serial cancellation. Simulation results show that, as the effect of Doppler increases, the proposed HIC achieves bit error rate (BER) performance enhancement in compared with severe performance degradation of conventional OFDMA receivers. In addition, both the computational complexity and total detection time are reduced.

Inter-carrier Interference Reduction Scheme for SFBC-OFDM Systems

  • Kim, Kyung-Hwa;Seo, Bangwon
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.783-790
    • /
    • 2014
  • In this paper, we first analyze carrier-to-interference ratio performance of the space-frequency block coded orthogonal frequency-division multiplexing (SFBC-OFDM) system in the presence of phase noise (PHN) and residual carrier frequency offset (RCFO). From the analysis, we observe that conventional SFBC-OFDM systems suffer severely in the presence of PHN and RCFO. Therefore, we propose a new inter-carrier interference (ICI) self-cancellation method - namely, ISC - for SFBC-OFDM systems to reduce the ICI caused by PHN and RCFO. Through the simulation results, we show that the proposed scheme compensates the ICI caused by PHN and RCFO in Alamouti SFBC-OFDM systems and has a better performance than conventional schemes.

Novel Beamforming and User Scheduling Algorithm for Inter-cell Interference Cancellation

  • Kim, Kyunghoon;Piao, Jinhua;Choi, Seungwon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.346-348
    • /
    • 2016
  • Coordinated multi-point transmission is a candidate technique for next-generation cellular communications systems. We consider a system with multiple cells in which base stations coordinate with each other by sharing user channel state information, which mitigates inter-cell interference (ICI), especially for users located at the cell edge. We introduce a new user scheduling method that considers both ICI and intra-cell orthogonality. Due to the influence of ICI cancellation and the loss reduction of effective channel gain during the beamforming process, the proposed method improves the system sum rate, when compared to the conventional method, by an average of 0.55bps/Hz for different numbers of total users per cell.

Low Complexity MMSE with Successive Interference Cancellation for OFDM Systems over Time-selective Channels (시변 채널 환경에서 OFDM 시스템을 위한 복잡도가 감소된 MMSE-SIC 등화기법)

  • Park, Ji-Hyun;Hwang, Seung-Hoon;Whang, Keum-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.743-750
    • /
    • 2008
  • Orthogonal frequency division multiplexing (OFDM) is a attractive modulation scheme for high data rate transmission in frequency-selective channels. However, the time selectivity of wireless channel introduces intercarrier interference (ICI), and consequently degrades system performance. In this paper, we first propose a novel recursive algorithm for minimum mean squared error (MMSE) with successive interference cancellation (SIC). The proposed algorithm can significantly reduce the complexity of the MMSE-SIC scheme and achieve the same performance when optimal ordering is known. Also, the further reduced scheme of the proposed algorithm can be developed based on ICI properties, while preserving performance.

An Approximated Model of the Coefficients for Interchannel Interference of OFDM System with Frequency Offset (주파수 오프셋이 있는 OFDM시스템에서 채널간간섭의 간섭계수 근사화 모델)

  • Li, Shuang;Kwon, Hyeock-Chan;Kang, Seog-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.917-922
    • /
    • 2018
  • In the conventional interchannel interference self-cancellation (ICI-SC) schemes, the length of sampling window is the same as the symbol length of orthogonal frequency division multiplexing (OFDM). Thus, the number of complex operations to compute the interference coefficient of each subchannel is significantly increased. To solve this problem, we present an approximated mathematical model for the coefficients of ICI-SC schemes. Based on the proposed approximation, we analyze mean squared error (MSE) and computational complexity of the ICI-SC schemes with the length of sampling window. As a result, the presented approximation has an error of less than 0.01% on the MSE compared to the original equation. When the number of subchannels is 1024, the number of complex computations for the interference coefficients is reduced by 98% or more. Since the computational complexity can be remarkably reduced without sacrificing the self-cancellation capability, it is considered that the proposed approximation is very useful to develop an algorithm for the ICI-SC scheme.

The Effects of Time Domain Windowing and Detection Ordering on Successive Interference Cancellation in OFDM Systems over Doubly Selective Channels (이중 선택적 채널 OFDM 시스템에서 시간 영역 윈도우와 검출 순서가 순차적 간섭 제거에 미치는 영향)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.635-641
    • /
    • 2010
  • Time-varying channel characteristics in OFDM systems over doubly selective channels cause inter-carrier interferences(ICI) in the frequency domain. Time domain windowing gives rise to restriction on the bandwidth of the frequency domain channel matrix and makes it possible to approximate the OFDM system as a simplified linear input-output model. When successive interference cancellation based on linear MMSE estimation is employed for channel equalization in OFDM systems, symbol detection ordering produces considerable effects on overall system performances. In this paper, we show the reduction of the residual ICI by time domain windowing and the resultant performance improvements, and investigate the effects of SINR- and CSEP-based symbol detection ordering on the performance of successive interference cancellation.