• Title/Summary/Keyword: ICC Algorithm

Search Result 19, Processing Time 0.026 seconds

Multi-Description Image Compression Coding Algorithm Based on Depth Learning

  • Yong Zhang;Guoteng Hui;Lei Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.232-239
    • /
    • 2023
  • Aiming at the poor compression quality of traditional image compression coding (ICC) algorithm, a multi-description ICC algorithm based on depth learning is put forward in this study. In this study, first an image compression algorithm was designed based on multi-description coding theory. Image compression samples were collected, and the measurement matrix was calculated. Then, it processed the multi-description ICC sample set by using the convolutional self-coding neural system in depth learning. Compressing the wavelet coefficients after coding and synthesizing the multi-description image band sparse matrix obtained the multi-description ICC sequence. Averaging the multi-description image coding data in accordance with the effective single point's position could finally realize the compression coding of multi-description images. According to experimental results, the designed algorithm consumes less time for image compression, and exhibits better image compression quality and better image reconstruction effect.

Simultaneous Estimation of Spatial Frequency and Phase Based on an Improved Component Cross-Correlation Algorithm for Structured Illumination Microscopy

  • Zhang, Yinxin;Deng, Jiajun;Liu, Guoxuan;Fei, Jianyang;Yang, Huaidong
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.317-325
    • /
    • 2020
  • Accurate estimation of spatial frequencies and phases for illumination patterns are essential to reconstructing super-resolution images in structured illumination microscopy (SIM). In this manuscript, we propose the improved component cross-correlation (ICC) algorithm, which is based on optimization of the cross-correlation values of the overlapping information between various spectral components. Compared to other algorithms for spatial-frequency and phase determination, the results calculated by the ICC algorithm are more accurate when the modulation depths of the illumination patterns are low. Moreover, the ICC algorithm is able to calculate the spatial frequencies and phases simultaneously. Simulation results indicate that even if the modulation depth is lower than 0.1, the ICC algorithm still estimates the parameters precisely; the images reconstructed by the ICC algorithm are much clearer than those reconstructed by other algorithms. In experiments, our home-built SIM system was used to image bovine pulmonary artery endothelial (BPAE) cells. Drawing support from the ICC algorithm, super-resolution images were reconstructed without artifacts.

An intelligent cruise control system using a self-tuning fuzzy algorithm (자기조절 퍼지 알고리듬을 이용한 지능순항제어시스템 개발)

  • Jung, Seung-Hyun;Lee, Gu-Do;Kim, Sang-Woo;Park, Poo-Gyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.68-75
    • /
    • 1998
  • The Intelligent Cruise Control system, ICC, is a driver assisting system for controlling relative speed and distance between two vehicles in the same lane. The ICC may be considered as an extension of a traditional cruise control, not only keeping a fixed speed of the vehicle, but correcting the speed also to that of a slower one ahead. This paper presents a real-time self-tuning fuzzy control algorithm to develop ICC. The self-tuning fuzzy control law is adopted to reduce the effects of nonlinearities of the vehicle and various road environments. In the self-tuning algorithm an interior penalty method is applied to preserve the inherent order of membership functions and is modified as an on-line algorithm for real time application. Via simulations, the performance of the suggested control algorithm is compared with a PID and a fuzzy control without self-tuning. The suggested control algorithm is implemented on PRV III and the results of the test driving on a local road are given.

  • PDF

A Fuzzy Intelligent Cruise Controller using a Self-tuning Method (자기 조절 기능을 갖는 퍼지 지능 순항 제어기 개발)

  • Lee, Gu-Do;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.499-503
    • /
    • 1997
  • In this paper, we present a fuzzy ICC using a self-tuning method. To provide robustness and adaptiveness over the vehicle nonlinearities and changes of the driving environments, an on-line self-tuning scheme based on 'Interior Penalty Function' was developed. Road test and computer simulation results verify the feasible performance of the suggested ICC algorithm.

  • PDF

A Modeling and Control of Intelligent Cruise Control Systems (지능형 순항 제어 시스템 모델링 및 제어)

  • Lee, Se-Jin;Hong, Jin-Ho;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.283-288
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster and a step-motor controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were per formed using a complete nonlinear vehicle model. The results indicate the proposed throttle/brake control law can provide the ICC system with an optimized performance.

Improved Active Power Filter Performance Based on an Indirect Current Control Technique

  • Adel, Mohamed;Zaid, Sherif;Mahgoub, Osama
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.931-937
    • /
    • 2011
  • This paper presents a method for the performance improvement of a shunt active power filter (SAPF) using the indirect current control (ICC) scheme. Compared to the conventional direct current control (DCC) scheme, the ICC gives better performance with a lower number of sensors. A simplified and efficient control algorithm using a low cost Intel 80C196KC microcontroller is implemented using only two current sensors for the source current and one voltage sensor for the DC-link voltage of the SAPF circuit. The objective is to eliminate harmonics and to compensate the reactive power produced by non-linear loads such as an uncontrolled rectifier feeding an inductive load. The APF is realized using a three phase voltage source inverter (VSI) with a dc bus capacitor. Experimental results are presented to prove the better performance of the ICC method over the DCC one.

A Minimum Data-Rate Guaranteed Resource Allocation With Low Signaling Overhead in Multi-Cell OFDMA Systems

  • Kwon, Ho-Joong;Lee, Won-Ick;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.26-35
    • /
    • 2009
  • In this paper, we investigate how to do resource allocation to guarantee a minimum user data rate at low signaling overhead in multi-cell orthogonal frequency division multiple access (OFDMA) wireless systems. We devise dynamic resource allocation (DRA) algorithms that can minimize the QoS violation ratio (i.e., the ratio of the number of users who fail to get the requested data rate to the total number of users in the overall network). We assume an OFDMA system that allows dynamic control of frequency reuse factor (FRF) of each sub-carrier. The proposed DRA algorithms determine the FRFs of the sub-carriers and allocate them to the users adaptively based on inter-cell interference and load distribution. In order to reduce the signaling overhead, we adopt a hierarchical resource allocation architecture which divides the resource allocation decision into the inter-cell coordinator (ICC) and the base station (BS) levels. We limit the information available at the ICC only to the load of each cell, that is, the total number of sub-carriers required for supporting the data rate requirement of all the users. We then present the DRA with limited coordination (DRA-LC) algorithm where the ICC performs load-adaptive inter-cell resource allocation with the limited information while the BS performs intra-cell resource allocation with full information about its own cell. For performance comparison, we design a centralized algorithm called DRA with full coordination (DRA-FC). Simulation results reveal that the DRA-LC algorithm can perform close to the DRA-FC algorithm at very low signaling overhead. In addition, it turns out to improve the QoS performance of the cell-boundary users, and achieve a better fairness among neighboring cells under non-uniform load distribution.

Development of a Wearable Inertial Sensor-based Gait Analysis Device Using Machine Learning Algorithms -Validity of the Temporal Gait Parameter in Healthy Young Adults-

  • Seol, Pyong-Wha;Yoo, Heung-Jong;Choi, Yoon-Chul;Shin, Min-Yong;Choo, Kwang-Jae;Kim, Kyoung-Shin;Baek, Seung-Yoon;Lee, Yong-Woo;Song, Chang-Ho
    • PNF and Movement
    • /
    • v.18 no.2
    • /
    • pp.287-296
    • /
    • 2020
  • Purpose: The study aims were to develop a wearable inertial sensor-based gait analysis device that uses machine learning algorithms, and to validate this novel device using temporal gait parameters. Methods: Thirty-four healthy young participants (22 male, 12 female, aged 25.76 years) with no musculoskeletal disorders were asked to walk at three different speeds. As they walked, data were simultaneously collected by a motion capture system and inertial measurement units (Reseed®). The data were sent to a machine learning algorithm adapted to the wearable inertial sensor-based gait analysis device. The validity of the newly developed instrument was assessed by comparing it to data from the motion capture system. Results: At normal speeds, intra-class correlation coefficients (ICC) for the temporal gait parameters were excellent (ICC [2, 1], 0.99~0.99), and coefficient of variation (CV) error values were insignificant for all gait parameters (0.31~1.08%). At slow speeds, ICCs for the temporal gait parameters were excellent (ICC [2, 1], 0.98~0.99), and CV error values were very small for all gait parameters (0.33~1.24%). At the fastest speeds, ICCs for temporal gait parameters were excellent (ICC [2, 1], 0.86~0.99) but less impressive than for the other speeds. CV error values were small for all gait parameters (0.17~5.58%). Conclusion: These results confirm that both the wearable inertial sensor-based gait analysis device and the machine learning algorithms have strong concurrent validity for temporal variables. On that basis, this novel wearable device is likely to prove useful for establishing temporal gait parameters while assessing gait.

Throttle/Brake Combined Control for Vehicle-to-vehicle Distance and Speed Control (찻간 속도/거리제어를 위한 구동력/제동력 통합제어)

  • 이세진;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.137-142
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. The control performance has been investigated through vehicle tests. The test vehicle is equipped with a MMW radar sensor, a solenoid-valve-controlled Electronic-Vacuum-Booster(EVB) and a step-motor controlled throttle actuator. The results indicate the proposed throttle/brake control laws can provide satisfactory vehicle-to-vehicle distance and velocity control performance.

  • PDF

A Study on the Printing Optimization by considering Eco-Friendly Printing and Printing Standards: Prepress (친환경과 표준 인쇄를 고려한 인쇄 최적화에 관한 연구: 프리 프레스)

  • Kim, Jun-Gon;Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • According as the latest printing technology is converted from analogue to digital, life cycle of a printing technology is shortened and the existent printing companies were faced always in a new technology. Specially, way of foreign countries export opened because globalization of printing market is accelerated. But, printing buyers of advanced nation require standard printing process control. fect at product process step. Emphasized in IPA technical conference for past several years tendency about graphic art color proofing and technical analysis and comparison going through Color Proofing RoundUP. These researchers have developed a color management technology. A specially developed printing technology and reference characterization data brought certain high quality elevation in a graphic art proofing technology. When excessive GCR method application supervise printing, width of color conversion necks by requiring a lot of color conversions than proofing. But, these point is lacking relatively than a lot of effects that GCR gives. Therefore, correct interests of GCR algorithm and verification step to forecast beforehand result about actuality application are positively necessary. Therefore, this research forced into input file which is applied with different levels from input to print for printing optimization that consider standard printing with eco-friendly by method to solve these problem. And experimented using manuscript who GCR level is applied as is different in each field, and analyzed the result. Also, it is verification method by step to last printing from input file that solve been the various quality who generate in actuality field through these analysis result. ICC color management confirmed printing optimization process applying GCR algorithm improved to base.