• 제목/요약/키워드: ICB

검색결과 46건 처리시간 0.019초

생체막 제거 방법에 따른 비우식성 치경부 병소의 미세인장강도 비교 (Comparison of microtensile bond strength on non-carious cervical lesions according to biofilm removal method)

  • 성건화;민정범;박태영
    • 대한치과의사협회지
    • /
    • 제58권11호
    • /
    • pp.683-689
    • /
    • 2020
  • Dentin surface of non-carious lesion is usually attached with oral biofilm. The biofilm should be removed before application of restorative material, because it may reduce the bond strength of adhesive system. The aim of this study was to evaluate the microtensile bond strength, when the biofilm was removed with brush or bur. Twenty extracted human third molars were sectioned horizontally to obtain dentin surface. Specimen were divided randomly into four group. Biofilm formation was performed in three group, except for Group 1 (negative control). Biofilm was removed as follows: Group 3, using ICB brush; Group 4, using lowspeed round bur #2. Group 2 (positive control) was not removed Biofilm. And in all four groups, the adhesive system (Optibond FL, Kerr) was applied to etched dentin surface, and resin composite was built up in three 1mm increments. After 24 hour storage in distilled water, the teeth were perpendicularly sectioned to obtain beams (1 × 1 mm2). Microtensile bond strength was measured and the data were statistically analyzed using one-way ANOVA and Tukey's post hoc test (p<0.05). Group 4 showed the highest microtensile bond strength (p<0.05), Group 3 showed no significant improvements when compared to Group 1. Group 2 showed lowest microtensile bond strength (p<0.05). When restoring a non-carious cervical lesion, it is essential to remove the biofilm present on the dentin surface. In addition, in the method of removing the biofilm, both the brush removal method and the bur removal method were effective.

  • PDF

이온화클러스터빔 증착법에 의한 구리 박막의 반도체 접촉구 메움 향상에 관한 연구 (Improvement of semiconductor contact hole filling of Copper by ionized cluster beam deposition technique)

  • 백민;손기황;김도진
    • 한국진공학회지
    • /
    • 제7권2호
    • /
    • pp.118-126
    • /
    • 1998
  • 반도체 접촉구를 메우기 위하여 소오스의 직진성을 향상시키기 위한 연구를 수행하 였다. 이온화클러스터빔 증착법을 이용하는 동시에 셀의 구조를 개선하여 직진성 향상을 도 모하였다. 중성클러스터 만으로 구리를 증착할 경우 직진성은 매우 우수하였으나 소오스의 표면 이동이 적어 박막은 주상형으로 성장하며 측벽에의 증착은 거의 일어나지 않았으며 성 장에 따라 그림자효과로 인한 단차에서의 벽개가 관찰되었다. 그러나, 가속전압을 인가하여 전하를 띤 클러스터를 형성시켜 증착하였을 때 주상형 성장 모드는 사라졌으며, 직경 0.5$\mu$ m, aspect ratio 2의 접촉구에서 완벽한 바닥면의 도포성을 나타내었고, 측벽에의 증착성도 향상되어 막의 연결성이 개선되었다. 이로써 이온화 클러스터빔 증착법이 직진성을 향상시 켜 작은 접촉구의 메움을 향상시킬수 있는 물리적 증착 방법임을 확인하였다.

  • PDF

상악 전치부 3D-티타늄 차폐막과 혈소판농축섬유소를 적용한 골유도재생술의 임상적 평가 (Clinical Evaluation of Guided Bone Regeneration Using 3D-titanium Membrane and Advanced Platelet-Rich Fibrin on the Maxillary Anterior Area)

  • 이나연;고미선;정양훈;이정진;서재민;윤정호
    • 대한구강악안면임플란트학회지
    • /
    • 제22권4호
    • /
    • pp.242-254
    • /
    • 2018
  • The aim of the current study was to evaluate the results of horizontal guided bone regeneration (GBR) with xenograf t (deproteinized bovine bone mineral, DBBM), allograf t (irradiated allogenic cancellous bone and marrow), titanium membrane, resorbable collagen membrane, and advanced platelet-rich fibrin (A-PRF) in the anterior maxilla. The titanium membrane was used in this study has a three-dimensional (3D) shape that can cover ridge defects. Case 1. A 32-year-old female patient presented with discomfort due to mobility and pus discharge on tooth #11. Three months after extracting tooth #11, diagnostic software (R2 GATE diagnostic software, Megagen, Daegu, Korea) was used to establish the treatment plan for implant placement. At the first stage of implant surgery, GBR for horizontal augmentation was performed with DBBM ($Bio-Oss^{(R)}$, Geistlich, Wolhusen, Switzerland), irradiated allogenic cancellous bone and marrow (ICB $cancellous^{(R)}$, Rocky Mountain Tissue Bank, Denver, USA), 3D-titanium membrane ($i-Gen^{(R)}$, Megagen, Daegu, Korea), resorbable collagen membrane (Collagen $membrane^{(R)}$, Genoss, Suwon, Korea), and A-PRF because there was approximately 4 mm labial dehiscence after implant placement. Five months after placing the implant, the second stage of implant surgery was performed, and healing abutment was connected after removal of the 3D-titanium membrane. Five months after the second stage of implant surgery was done, the final prosthesis was then delivered. Case 2. A 35-year-old female patient presented with discomfort due to pain and mobility of implant #21. Removal of implant #21 fixture was planned simultaneously with placement of the new implant fixture. At the first stage of implant surgery, GBR for horizontal augmentation was performed with DBBM ($Bio-Oss^{(R)}$), irradiated allogenic cancellous bone and marrow (ICB $cancellous^{(R)}$), 3D-titanium membrane ($i-Gen^{(R)}$), resorbable collagen membrane (Ossix $plus^{(R)}$, Datum, Telrad, Israel), and A-PRF because there was approximately 7 mm labial dehiscence after implant placement. At the second stage of implant surgery six months after implant placement, healing abutment was connected after removing the 3D-titanium membrane. Nine months after the second stage of implant surgery was done, the final prosthesis was then delivered. In these two clinical cases, wound healing of the operation sites was uneventful. All implants were clinically stable without inflammation or additional bone loss, and there was no discomfort to the patient. With the non-resorbable titanium membrane, the ability of bone formation in the space was stably maintained in three dimensions, and A-PRF might influence soft tissue healing. This limited study suggests that aesthetic results can be achieved with GBR using 3D-titanium membrane and A-PRF in the anterior maxilla. However, long-term follow-up evaluation should be performed.

CHARACTERISTICS OF HETEROEPITAXIALLY GROWN $Y_2$O$_3$ FILMS BY r-ICB FOR VLSI

  • Choi, S.C.;Cho, M.H.;Whangbo, S.W.;Kim, M.S.;Whang, C.N.;Kang, S.B.;Lee, S.I.;Lee, M.Y.
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.809-815
    • /
    • 1996
  • $Y_2O_3$-based metal-insulator-semiconductor (MIS) structure on p-Si(100) has been studied. Films were prepared by UHV reactive ionized cluster beam deposition (r-ICBD) system. The base pressure of the system was about $1 \times 10^{-9}$ -9/ Torr and the process pressure $2 \times 10^{-5}$ Torr in oxygen ambience. Glancing X-ray diffraction(GXRD) and in-situ reflection high energy electron diffracton(RHEED) analyses were performed to investigate the crystallinity of the films. The results show phase change from amorphous state to crystalline one with increasingqr acceleration voltage and substrate temperature. It is also found that the phase transformation from $Y_2O_3$(111)//Si(100) to $Y_2O_3$(110)//Si(100) in growing directions takes place between $500^{\circ}C$ and $700^{\circ}C$. Especially as acceleration voltage is increased, preferentially oriented crystallinity was increased. Finally under the condition of above substrate temperature $700^{\circ}C$ and acceleration voltage 5kV, the $Y_2O_3$films are found to be grown epitaxially in direction of $Y_2O_3$(1l0)//Si(100) by observation of transmission electron microscope(TEM). Capacitance-voltage and current-voltage measurements were conducted to characterize Al/$Y_2O_3$/Si MIS structure with varying acceleration voltage and substrate temperature. Deposited $Y_2O_3$ films of thickness of nearly 300$\AA$ show that the breakdown field increases to 7~8MV /cm at the same conditon of epitaxial growing. These results also coincide with XPS spectra which indicate better stoichiometric characteristic in the condition of better crystalline one. After oxidation the breakdown field increases to 13MV /cm because the MIS structure contains interface silicon oxide of about 30$\AA$. In this case the dielectric constant of only $Y_2O_3$ layer is found to be $\in$15.6. These results have demonstrated the potential of using yttrium oxide for future VLSI/ULSI gate insulator applications.

  • PDF

방사선 조사 망상골이 외방형 골형성에 미치는 영향 (The effect of irradiated cancellous human bone on exophytic bone formation in residual ridge of the beagle dog)

  • 정미현;허익;권영혁;박준봉;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제37권4호
    • /
    • pp.791-803
    • /
    • 2007
  • The purpose of this study was to evaluate exophytically vertical bone formation in residual ridge of the beagle dog by the concept of guided bone regeneration with a titanium reinforced e-PTFE membrane combined with irradiated cancellous human bone. Twelve male beagle dogs(mean age 1.5 years and mean weight 12kg) were used for this study. The alveolar ridges after extraction of all mandibular premolars were surgically and horizontally removed. At 8 weeks after extractions, full-thickness flap was reflected and cortical bone was removed with round bur and copious irrigation. Rectangular parallelepiped(10mm in length, 5mm in width, and 4mm in height) bended with titanium-reinforced e-PTFE(TR e-PTFE) membrane was placed on the decorticated alveolar ridge, fixed with metal pins and covered with full-thickness flap and assigned as a control group. Test groups ere treated with TR e-PTFE membrane filled with irradiated cancellous human bone. Of twelve beagle dogs, four control dogs and four test dogs without membrane exposure to oral cavity were sacrificed at 8 and 16 weeks respectively. The surgical sites were dissected out, fixed in 4% buffered formaldehyde, dyed using a Villanueva staining technique, and processed for embedding in plastic resin. The cutting and grinding methods were routinely processed for histologic and histomophometric analyis of exophytic bone formation as well as statistical analysis. The results of this study were as follows: 1. Exophytic bone formation in the both of experimental groups was increased respectively after surgery from 23.40% at 8 weeks to 46.26% at 16 weeks in the control groups, from 40.23% at 8 weeks to 47.11% at 16 weeks in the test groups(p<0.05). 2. At 8 weeks after surgery, exophytic bone formation was made 40.23% in the test groups and 33.40% in the control groups. Exophytic bone formation was significantly made in the test group more than in the control group. At 16 weeks after surgery, exophytic bone formation was made 44.11% in the test groups and 46.26% in the control groups. Exophytic bone formation was made in the test groups more than in the control groups, but there was no statistically significant differences. 3. The membrane was fixed with metal pins to closely contact it to the bone surface. So, collapse and deviation of the membrane could be prevented and in growth of connective tissue also could be blocked from the periphery of the membrane. On the basis of these findings, wee suggest that intraoral experimental model for exophytic bone formation may be effective to evaluate the effect of bone graft material. And it indicates that combined use of membrane and ICB graft material is more effective than use of membrane only for exophytic bone formation.

상악동저 거상술과 임플란트 식립 후 상악동저 변화에 대한 연구 (Radiographic change of grafted sinus floor after maxillary sinus floor elevation and placement of dental implant)

  • 조상호;김옥수
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.345-359
    • /
    • 2006
  • Loss of maxillary molar teeth leads to rapid loss of crestal bone and inferior expansion of the maxillary sinus floor (secondary pneumatization). Rehabilitation of the site with osseointegrated dental implants often represents a clinical challenge because of the insufficient bone volume resulted from this phenomenon. Boyne & James proposed the classic procedure for maxillary sinus floor elevation entails preparation of a trap door including the Schneiderian membrane in the lateral sinus wall. Summers proposed another non-invasive method using a set of osteotome and the osteotome sinus floor elevation (OSFE) was proposed for implant sites with at least 5-6mm of bone between the alveolar crest and the maxillary sinus floor. The change of grafted material in maxillary sinus is important for implant survival and the evaluation of graft height after maxillary sinus floor elevation is composed of histologic evaluation and radiomorphometric evaluation. The aim of the present study was radiographically evaluate the graft height change after maxillary sinus floor elevation and the influence of the graft material type in height change and the bone remodeling of grafts in sinus. A total of 59 patients (28 in lateral approach and 31 in crestal approach) who underwent maxillary sinus floor elevation composed of lateral approach and crestal approach were radiographically followed for up to about 48 months. Change in sinusgraft height were calculated with respect to implant length (IL) and grafted sinus height(BL). It was evaluated the change of the graft height according to time, the influence of the approach technique (staged approach and simultaneous approach) in lateral approach to change of the graft height, and the influence of the type of graft materials to change of the graft height. Patients were divided into three class based on the height of the grafted sinus floor relative to the implant apex and evaluated the proportion change of that class (Class I, in which the grafted sinus floor was above the implant apex; Class II, in which the implant apex was level with the grafted sinus floor; and Class III, in which the grafted sinus floor was below the implant apex). And it was evaluated th bone remodeling in sinus during 12 months using SGRl(by $Br\ddot{a}gger$ et al). The result was like that; Sinus graft height decreased significantly in both lateral approach and crestal approach in first 12 months (p$MBCP^{TM}$ had minimum height loss. Class III and Class II was increased by time in both lateral and crestal approach and Class I was decreased by time. SGRI was increased statistically significantly from baseline to 3 months and 3 months(p<0.05) to 12 months(p$ICB^{(R)}$ single use, more reduction of sinusgraft height was appeared. Therefore we speculated that the mixture of graft materials is preferable as a reduction of graft materials. Increasing of the SGRI as time goes by explains the stability of implant, but additional histologic or computed tomographic study will be needed for accurate conclusion. From the radiographic evaluation, we come to know that placement of dental implant with sinus floor elevation is an effective procedure in atrophic maxillary reconstruction.