A suitable representation for the conceptual simplicity of the data in statistics and signal processing is essential for a subsequent analysis such as prediction, pattern recognition, and spatial analysis. Independent component analysis (ICA) is a statistical method for transforming an observed high-dimensional multivariate data into statistically independent components. ICA has been applied increasingly in wide fields of spectrum application since ICA is able to extract unknown components of a mixture from spectra. We focus on application of ICA for separating independent sources and predicting each composition using extracted components. The theory of ICA is introduced and an application to a metal surface spectra data will be described, where subsequent analysis using non-negative least square method is performed to predict composition ratio of each sample. Furthermore, some simulation experiments are performed to demonstrate the performance of the proposed approach.
Signal is composed of the independent components that can describe itself. These components can distinguish itself from any other signals and be extracted by analysis itself. This algorithm is called Independent Component Analysis (ICA) and image signal is considered as linear combination of independent components and features that is the weighted vector of independent component. This algorithm is already used in order to extract the good feature for image classification and very effective In this paper, we'll explain the method of stereo matching using independent component analysis and show the experimental result.
Purpose : Eyeball movement is one of the main artifacts in EEG. A new approach to the removal of these artifacts is presented using independent component analysis(ICA). This technique is a signal-processing algorithm to separate independent sources from unknown mixed signals. This study was performed to show that ICA is a useful method for the separation of EEG components with little data deformity. Methods : 12 sets of 10 sec digital EEG data including eye opening and closure were obtained using international 10~20 system scalp electrodes. ICA with 18 tracings of double banana bipolar montage was performed. Among obtained 18 independent components, two components, which were thought to be eyeball movements were removed. Other 16 components were reconstructed into original bipolar montage. Power spectral analysis of EEGs before and after ICA was done and compared statistically. Total 12 pairs of data were compared by visual inspection and relative power comparison. Results : Waveforms of each pair looked alike by visual inspection. Means of relative power before and after ICA were 29.16% vs. 28.27%, 12.12% vs. 12.41%, 10.55% vs. 10.52%, and 19.33% vs. 18. 33% for alpha, beta, theta, and delta, respectively. These values were statistically same before and after ICA. Conclusions : We found little data deformity after ICA and it was possible to isolate eyeball movements in EEG recordings. Many other components of EEG could be selectively separated using ICA.
Independent Component Analysis (ICA) is a blind source separation method using unsupervised learning and mutual information theory created in the late eighties and developed in the nineties. It has already succeeded in separating eye movement artifacts from human scalp EEG recording. Several characteristic sleep waves such as sleep spindle, K-complex, and positive occipital sharp transient of sleep (POSTS) can be recorded during sleep EEG recording. They are used as stage determining factors of sleep staging and might be reflections of unknown neural sources during sleep. We applied the ICA method to sleep EEG for sleep waves separation. Eighteen channel scalp longitudinal bipolar montage was used for the EEG recording. With the sampling rate of 256Hz, digital EEG data were converted into 18 by n matrix which was used as a original data matrix X. Independent source matrix U (18 by n) was obtained by independent component analysis method ($U=W{\timex}X$, where W is an 18 by 18 matrix obtained by ICA procedures). ICA was applied to the original EEG containing sleep spindle, K-complex, and POSTS. Among the 18 independent components, those containing characteristic shape of sleep waves could be identified. Each independent component was reconstructed into original montage by the product of inverse matrix of W (inv(W)) and U. The reconstructed EEG might be a separation of sleep waves without other components of original EEG matrix X. This result (might) demonstrates that characteristic sleep waves may be separated from original EEG of unknown mixed neural origins by the Independent Component Analysis (ICA) method.
EEG-based brain-computer interfaces has focused on explicitly expressed intentions to assist physically impaired patients. For EEG-based-computer interfaces to function effectively, it should be able to understand users' implicit information. Since it is hard to gather EEG signals of human brains, we do not have enough training data which are essential for proper classification performance of implicit intention. In this paper, we improve the subject independent classification of implicit intention through the generation of additional training data. In the first stage, we perform the PCA (principal component analysis) of training data in a bid to remove redundant components in the components within the input data. After the dimension reduction by PCA, we train ICA (independent component analysis) network whose outputs are statistically independent. We can get additional training data by adding Gaussian noises to ICA outputs and projecting them to input data domain. Through simulations with EEG data provided by CNSL, KAIST, we improve the classification performance from 65.05% to 66.69% with Gamma components. The proposed sample generation method can be applied to any machine learning problem with fewer samples.
본 논문은 화자 적응시 화자 독립 모델의 차수를 줄이고 MLLR (Maximum Likelihood Linear Regression) 알고리즘에서 요구되는 역행렬 횟수를 줄이는 방법을 제안한다. 주성분분석 (PCA: principal components analysis)과 독립성분분석 (ICA: independent components analysis)을 통해 모델 혼합성분 (mixture component)들간의 상관관계를 줄임으로서 모델의 차수를 감소하였다. 주성분분석 및 독립성분분석에 요구되는 추가 연산량은 화자 독립 모델을 훈련할 때 추가함으로써 화자 적응시에 추가되는 연산량은 극히 미소하다. 36차의 HMM 파라메타 차수를 PCA는 12차, ICA는 10차로 감소하였을 때 기존의 MLLR 적응방법과 유사한 단어 인식률을 나타내었다. 즉, 모델 파라미터의 차수를 n이라고 할 때 기존의 MLLR알고리즘에서 역행열 연산에서 요구되는 연산량은 O(n⁴)에 비례하므로 PCA는 1/81, ICA는 1/167만큼 연산량을 감소하였다.
There are many methods in feature extraction have been developed. Recently, principal components analysis (PCA) and independent components analysis (ICA) is introduced for doing feature extraction. PCA and ICA linearly transform the original input into new uncorrelated and independent features space respectively In this paper, the feasibility of using nonlinear feature extraction will be studied. This method will employ the PCA and ICA procedure and adopt the kernel trick to nonlinearly map the data into a feature space. The goal of this study is to seek effectively useful feature for faults classification.
In this paper we apply several variations of independent component analysis( ICA) methods, such as spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA), to yeast cell cycle datasets, and compare their performance in finding components that result in gene clusters coherent with annotations and in extract ins meaningful temporal modes. It turns out that the results of tICA are superior to those of PCA, sICA, and stICA in terms of gene clustering and the temporal modes extracted by stICA highlights particular cellular processes.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.23-28
/
2002
Among effective feature extraction methods from the small-patched image set, independent component analysis (ICA) is recently well known stochastic manner to find informative basis images. The ICA simultaneously learns both basis images and independent components using high order statistic manners, because that information underlying between pixels are sensitive to high-order statistic models. The topographic ICA model is adapted in our experiment. This paper deals with an unsupervised classification strategies using learned ICA basis images. The experimental result by proposed classification technique shows superior performance than classic texture analysis techniques for the panchromatic KOMPSAT imagery.
본 논문은 주성분분석(PCA, Principle Component Analysis) 혹은 독립성분분석(ICA, Independent Principle Component Analysis)를 이용하여 HMM(Hidden Markov Model) 파라메타의 차수를 감소시킴으로써 MLLR(Maximum Likelihood Linear Regression) 화자 적응 알고리즘을 개선하였다. 데이터의 특징을 잘 나타내는 PCA와 ICA를 통해 모델 mixture component의 상관관계를 줄이고 상대적으로 데이터의 분포가 적은 축을 삭제함으로써 추정해야 하는 적응 파라메타의 수를 줄였다. 기존의 MLLR 알고리즘은 SI(Speaker Independent)모델 보다 좋은 인식성능을 나타내기 위해 30초 이상의 적응 데이터가 요구되었고, 반면 제안한 알고리즘은 적응 파라메타의 수를 감소시킴으로써 10초 이상의 적응데이터가 요구되었다. 또한, 36차의 HMM 파라메타는 기존의 MLLR 알고리즘과 비슷한 인식성능을 나다내는 10차의 주성분이나 독릭성분을 사용함으로써 MLLR 알고리즘에서 적응파라메타를 추정할 때 요구되는 연산량을 1/167로 감소시켰다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.