• 제목/요약/키워드: IC-UV/VIS spectrometer

검색결과 2건 처리시간 0.015초

자외선/가시선 분광법을 이용한 토양 중 6가 크롬 분석방법의 방해요인 분석 및 이온크로마토그래피 적용에 관한 연구 (A Study of Interference Factor of Analysis Method of Hexavalent Chromium in Soil using UV/VIS Spectrometry and Application of Ion Chromatography)

  • 노회정;이명규;이현석;김미라;김동호;김태승
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권6호
    • /
    • pp.33-42
    • /
    • 2012
  • This study was performed to find the problems according to interference factors (organic matter, pH, Cr, Mn, Fe, clay, and etc.) when we analyzed the hexavalent chromium [Cr(VI)] in soils using UV/VIS spectrometer (US EPA 7196A), attempted to evaluate the domestic applicability of analytical method (US EPA 7199) using IC-UV/VIS spectrometer as alternative method. The recovery rate of certified reference materials was 75.0% (US EPA 7196A) and 101.4% (US EPA 7199) by the analytical methods. As the results of performing QA/QC about US EPA 7199, method detection limit (MDL) and limit of quantification (LOQ) were 0.062 mg/kg, 0.196 mg/kg, respectively. The LOQ of US EPA 7199 was lower than that of the current soil official testing method in Korea (0.5 mg/kg). Cr(VI) contents in 23 soil samples were compared by the analytical methods of EPA 7196A and 7199. Cr(VI) was detected in 13 of 23 soil samples by EPA 7196A, while EPA 7199 was not detected in any soil samples. The Cr(VI) content in 23 soil samples by EPA 7196A was not clearly correlated with Cr, Fe, Mn and clay content in the soil samples. However, the contents of Cr(VI) and organic matter of the soil samples had the highest coefficient of determination ($R^2$) of 0.80. In order to evaluate the correlation between the recovery rates of Cr(VI) and organic matter contents in the soil samples, the recovery rates of 5 soil samples added Cr(VI) standard solution were analyzed by the analytical methods. According to the results, the higher the organic matter contents in soil samples, the lower the recovery rates of Cr(VI) by US EPA 7196, while in case of US EPA 7199, the recovery rates were stable regardless of the organic matter contents.

Performance Evaluation of Hazardous Substances using Measurement Vehicle of Field Mode through Emergency Response of Chemical Incidents

  • Lee, Yeon-Hee;Hwang, Seung-Ryul;Kim, Jae-Young;Kim, Kyun;Kwak, Ji Hyun;Kim, Min Sun;Park, Joong Don;Jeon, Junho;Kim, Ki Joon;Lee, Jin Hwan
    • 한국환경농학회지
    • /
    • 제34권4호
    • /
    • pp.294-302
    • /
    • 2015
  • BACKGROUND: Chemical accidents have increased owing to chemical usage, human error and technical failures during the last decades. Many countries have organized supervisory authorities in charge of enforcing related rules and regulations to prevent chemical accidents. A very important part in chemical accidents has been coping with comprehensive first aid tool. Therefore, the present research has provided information with the initial applications concern to the rapid analysis of hazardous material using instruments in vehicle of field mode after chemical accidents. METHODS AND RESULTS: Mobile measurement vehicle was manufactured to obtain information regarding field assessments of chemical accidents. This vehicle was equipped with four instruments including gas chromatography with mass spectrometry (GC/MS), Fourier Transform Infrared Spectroscopy (FT-IR), Ion Chromatography (IC), and UV/Vis spectrometer (UV) to analyses of accident preparedness substances, volatile compounds, and organic gases. Moreover, this work was the first examined the evaluation of applicability for analysis instruments using 20 chemicals in various accident preparedness substances (GC/MS; 6 chemicals, FT-IR; 2 chemicals, IC; 11 chemicals, and UV; 1 chemical) and their calibration curves were obtained with high linearity ( r 2 > 0.991). Our results were observed the advantage of the high chromatographic peak capacity, fast analysis, and good sensitivity as well as resolution. CONCLUSION: When chemical accidents are occurred, the posted measurement vehicle may be utilized as tool an effective for qualitative and quantitative information in the scene of an accident owing to the rapid analysis of hazardous material.