• Title/Summary/Keyword: IC-MS/MS

Search Result 257, Processing Time 0.028 seconds

Chemical Composition of Leaves, Stem bark and Fruit Essential Oil from Premna foetida Linn

  • UMARU, Isaac John;AHMED, Maryam Usman;HABIBU, Bilyaminu;EMOCHONE, Yohanna Roy
    • The Korean Journal of Food & Health Convergence
    • /
    • v.7 no.6
    • /
    • pp.1-8
    • /
    • 2021
  • Premna foetida is a woody plant with short and twisted trunk. P. foetida is a scandent, erect shrub or small tree, thorny on the trunk and large branches. Leaves are opposite or whorled and entire or serrate. Premna foetida is a wild plant locally known as "Daun Sebuas". P. foetida is used for it nutritive and as traditional treatment. The fruit and leaves of P. foetida are prepared for salad. The study aimed at the hydrodistillation and antioxidant activity of leaves, stem-bark and fruits essential oil from Premna foetida Linn, they were analysed by capillary GC and GC-MS. Ninety eight compounds representing 81.68±0.02, 37.31±0.05 and 93.45±0.03 of the isolates of leaves, stem-bark and fruits respectively were identified, the most abundant were α -Duprezianene (77.27±0.03, leaves, α-Gurjunene (36.06±0.05) fruits and Hinesol acetate (77.19±0.03) stem-bark. Components among which sesquiterpenoids dominated. The total volatiles were assayed for antioxidant potentials using 2, 2-diphenyl-1-picrylhydrazyl (DPPH). The total volatiles showed strong activity with IC50 of 11.74±0.82㎍/ml, 9.63±0.34 ㎍/ml and 49.73±1.12 ㎍/ml for leaves fruits and stem-bark respectively.

Bacterial neuraminidase inhibitory linarin from Dendranthema zawadskii

  • Ju Yeon Kim;Jae Yeon Park;Yun Gon Son;Kyu Lim Kim;Jeong Yoon Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.1-6
    • /
    • 2023
  • Dendranthema zawadskii is a one of the popular plants as native in South Korea. In this study, linarin was isolated and purified using silica-gel, Diaion, and Sephadex LH-20 from the aerial parts of D. zawadskii. The chemical structure was completely identified through spectroscopic data including 1D, 2D nucleic magnetic resonance, and HRFABMS. Furthermore, linarin inhibited the bacterial neuraminidase (BNA) activity with 13.5 μM of IC50 dose-dependently. Through the enzyme kinetic experiments, linarin as BNA inhibitor exhibited a typical noncompetitive inhibition mode which Km was contestant and Vmax decreased as the concentration of the inhibitor increased. It was further identified that the inhibition constant was 16.0 μM. Linarin was the most abundance metabolite in the aerial part of D. zawadskii extract by UHPLC-TOF/MS analysis. Therefore, D. zawadskii and its main component are expected that it can be effectively used for the infection and inflammation caused by bacteria.

Comparison of Ingredients and Antioxidant Activity of the Domestic Regional Wolfiporia extensa (국내 지역별 매립 복령의 성분 및 항산화 활성 비교)

  • Choi, Su-Hee;Lee, Seung-Jin;Jo, Woo-Sik;Choi, Jong-Woon;Park, Seung-Chun
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • This study was conducted for comparison of ingredients, phytochemical compounds and antioxidant activity of Wofiporia extensa cultured in Gangwon-do, Gyeongsang-do, and Jeolla-do. Three contents of Wofiporia extensa were analyzed as oxygen (46~48%), carbon (38~39%), hydrogen (6.05~6.1%) and nitrogen (0.17~0.21%). The mineral contents of 50% ethanol Wofiporia extensa extracts were measured as sulfur (S) 145~149 ppm, Magnesium (Mg) 69~72 ppm, phosphorus (P) 122~154 ppm and calcium (Ca) 210.61~509.98 ppm. Wofiporia extensa from Gyeongsang-do (509.98 ppm) contained a significantly higher quantity of Ca than that from Gangwon-do (210.62 ppm) and Jeolla-do (223.88 ppm). In the gas chromatograph-mass spectrometry (GC-MS) analysis, oleic acid was identified in three 50% ethanol Wofiporia extensa extracts. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay for antioxidant activity, the $IC_{50}$ values of Wofiporia extensa cultured in Gangwon-do, Gyeongsang-do and Jeolla-do were calculated as 2.966 mg/mL, 23.03 mg/mL, and 4.16 mg/mL and 3.521 mg/mL, 12.17 mg/mL, and 7.40 mg/mL. In the ferric reducing antioxidant power (FRAP) assay, the $IC_{50}$ values of Wofiporia extensa cultured in Gangwon-do, Gyeongsang-do, Jeolla-do were 6.585 mg/mL, 19.06 mg/mL, and 18.97 mg/mL, respectively. In summary, Wofiporia extensa cultured in Gangwon-do had stronger antioxidant activity and higher concentration of oleic acid than that of Geyongsang-do and Jeolla-do. However, Wofiporia extensa cultured in Geyongsang-do contained a much higher concentration of Ca than that of Gangwon-do and Jeolla-do.

Effects of Herbal Complex on Blood Glucose in Streptozotocin-induced Diabetic Rats and in Mice Model of Metabolic Syndrome (생약복합제의 Streptozotocin 유발 당뇨 및 대사성증후군 모델 동물에서의 혈당에 미치는 효과)

  • Park, Han-Seok;Lee, Yeon-Sil;Choi, Se-Jin;Kim, Jin-Kyu;Lee, Yun-Lyul;Kim, Hyun-Gwen;Koo, Sam-Hoi;Ku, Dae-Hoy;Ki, Seung-Il;Lim, Soon-Sung
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.3
    • /
    • pp.196-204
    • /
    • 2009
  • This study was carried out to investigate the in vivo and in vitro inhibitory effect of a traditional herbal complex (HC) extract prepared from a mixture of four oriental herbs (Dioscorea Rhizoma, Glycine soja Sieb. et Zucc, Bombycis corpus, Fermented Glycine soja) that have been widely used for the treatment and prevention of diabetes mellitus on hyperglycemia. The water extract of HC showed potent inhibitory effect on $\alpha$-glucosidase with $IC_{50}$ value of 1.24 mg/mL. Additionally, the ethanol extract of HC was also found to exhibit significant inhibitory effect against protein tyrosine phosphatase $1{\beta}$ ($PTP1{\beta}$), which is known as a major regulator of both insulin and leptin signaling. In the $PTP1{\beta}$ inhibitory assay, the most active n-hexane fraction obtained from the ethanol extract of HC, was identified as a mixture of fatty acid derivatives by gas chromatography-mass spectrometry (GC-MS). In high-fat diet-low dose streptozotocin (STZ)-induced diabetic rat, the water extract of HC improved the oral glucose intolerance as compared with rosiglitazone. HC also caused a marked decrease of body weight and fasting blood glucose and a significant improvement on glucose tolerance in metabolic syndrome mice model. These findings support that this traditional HC may be useful in the control of blood glucose in diabetes mellitus and metabolic syndrome.

Effects of potassium channel modulators on the fatigue velocity of mouse skeletal muscle (K+ 통로 조절 약물이 마우스 골격근의 피로현상에 미치는 영향)

  • Lee, Ki-ho;Ryu, Pan-dong;Lee, Mun-han;Lee, Hang
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.2
    • /
    • pp.245-254
    • /
    • 1995
  • The density of ATP-sensitive potassium($K_{APT}$) channels, that open as intracellular ATP concentration falls below a critical level, is very high in skeletal muscle surface membrane and those high density may imply that $K_{ATP}$ channels have very important physiological roles. To elucidate a role of $K_{ATP}$ in relation to fatigue, the modulating effects of potassium channel openers and blockers on the fatigue velocity(FV) of mouse extensor hallucis longus muscle(EHL) were investigated in vitro. Twitch contraction was induced by an electrical field stimulation (EFS: 24-48V, 20ms, 0.2-4Hz) and resulting contraction force was isometrically recorded. The twitch forces were gradually decreased to 25% of initial contraction force(ICF) in $37.52{\pm}1.55sec$($mean{\pm}s.e.m.$, n=135), indicating the fatigue phenomena. The mean velocity for development of the fatigue was measured during the period that twitch force decreased to half($FV_{0/0.5}$) and during the period from half to 25%($FV_{0.5/0.25}$) of ICF. The fatigue was induced once every one hour and the tissue response was stable for up to 4 hours. In control condition, ICF was $5.8{\pm}0.12g$ (n=144) and decreased to 50% of ICF with the mean fatigue velocity of $0.182{\pm}0.006g/sec$($FV_{0/0.5}$, n=135) and from 50% to 25% of ICF with $0.084{\pm}0.004g/sec$($FV_{0.5/0.25}$, n=135). Cromakalim($50{\mu}M$) significantly increased $FV_{0.5/0.25}$(n=4). Glibenclamide($IC_{50}>50{\mu}M$), $Ba^{2+}$($IC_{50}=10{\mu}M$), 4-aminopyridine($FV_{0/0.5}$, $IC_{50}=0.5mM$; $FV_{0.5/0.25}$, $IC_{50}=2mM$) decreased both $FV_{0/0.5}$ and $FV_{0.5/0.25}$ concentration-dependently up to 75%. $TEA^+$(30mM), E-4031($10{\mu}M$), tolbutamide(1mM) decreased $FV_{0.5/0.25}$, but apamin(300nM) and $TEA^+$(10mM) showed no significant effects. Our results suggest that activation of the $K_{ATP}$ channels may be major cause of $K^+$ outflux during development of the fatigue and the isolated EHL muscle could be an useful experimental preparation in studying the fatigue phenomena in skeletal muscle. In addition, the possibility of activation of delayed rectifier during the fatigue development remains to be studied further.

  • PDF

Functional and Volatile Flavor Components in Myungtae(Alaska pollack) sikhae (마른명태 식해의 향기성분과 기능성)

  • Koo, Tae-Ho;Zhang, Yun-Bin;Choi, Hee-Jin;Woo, Hi-Seoh;Son, Gyu-Mok;Choi, Cheong
    • Journal of the Korean Society of Food Culture
    • /
    • v.17 no.5
    • /
    • pp.535-542
    • /
    • 2002
  • The volatile compounds of Myungtae (Alaska pollack) sikhae obtained by simultaneous steam distillation and extraction(SDE) apparatus were separated by gas chromatography(GC) and gas chromatography mass spectrometry(GC/MS). The totals of 155 volatile flavor components was identified in traditional Kyungsangdo Myungtae (Alaska pollack) sikhae, respectively. ${\alpha}$-Zingihirene(11.03%) (E)-di-2-propenyl disulfide(7.95%) ${\beta}$-cironellol(6.02%), methyl allyl disulfide(3.58%), cryptone(3.39%), camphene(3.23%), pentanol(3.21%), penadecanal(2.66%) and ${\beta}$-phellandrene(2.06%) were contained as the main compounds of Myungtae shikae. The fraction obtained from sikhae were tested for electron donating ability, angiotensin converting enzyme and xanthine oxidase inhibitory activity. There was no electron donating abilities$(SC_{50})$ of hexane and water fraction. On the other hand, the abilities of ethylacetate fraction and butanol fraction showed $310.64\;{\mu}g/mL,\;1096.49\;{\mu}g/mL$, respectively. Angiotensin converting enzyme inhibitory activities$(IC_{50})$ of ethylacetate fraction and butanol fraction were 1.623 mg/mL, 1.303 mg/mL, respectively. Xanthine oxidase inhibitory activities$(IC_{50})$ of ethylacetate fraction and butanol fraction were 3.591 mg/mL, 2.083 mg/mL, respectively.

Glycerides from the Aerial Parts of Garland (Chrysanthemum coronarium L.) and Their Inhibitory Effects on ACAT, DGAT, FPTase, and $\beta$-Secretase

  • Song, Myoung-Chong;Yang, Hye-Joung;Cho, Jin-Gyeong;Chung, In-Sik;Kwon, Byoung-Mog;Kim, Dae-Keun;Baek, Nam-In
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.95-102
    • /
    • 2009
  • The aerial parts of garland (Chrysanthemum coronarium L.) were extracted in 80% aqueous methanol (MeOH) and the concentrated extract was then partitioned using ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$, successively. EtOAc and n-BuOH fractions resulted in 4 glycerides with the application of octadecyl silica gel and silica gel column chromatography. The chemical structures of the glycerides were determined using several spectroscopic methods, including nuclear magnetic resonance (NMR) and mass spectrometry (MS) as (2S)-1-O-palmitoyl-sn-glycerol (1), (2S)-1-O-oleoyl-2-O-oleoyl- 3-O-$\beta$-D-galactopyranosyl-sn-glycerol (2), (2S)-1-O-palmitoyl-2-O-linoleoyl-3-O-phosphorouscholine-sn-glycerol (3), and (2S)-1-O-linolenoyl-2-O-palmitoyl-3-O-[$\alpha$-D-galactopyrasyl-($1{\rightarrow}6$)-$\beta$-D-galactopyranosyl]-sn-glycerol (4). The free fatty acids of these glycerides were determined with gas chromatography (GC)-MS analysis following alkaline hydrolysis and methylation. These glycerides demonstrated an inhibitory effect on acyl-CoA: cholesterol acyltransferase (ACAT, compound 1: $45.6{\pm}0.2%$ at $100{\mu}g/mL$), diacylglycerol acyltransferase (DGAT, compound 1: $59.1{\pm}0.1%$ at $25{\mu}g/mL$), farnesyl protein transferase (FPTase, compound 2: $98.0{\pm}0.1%$; compound 3: $55.2{\pm}0.1%$ at $100{\mu}g/mL$), and $\beta$-secretase ($IC_{50}$, compound 4: $2.6{\mu}g/mL$) activity. This paper is the first report on the isolation of these glycerides from garland and their inhibitory activity on ACAT, DGAT, FPTase, and $\beta$-secretase.

Inhibition of Drug-metabolizing Enzyme and Drug Transporter by Major Components of Phellodendri cortex (황백의 주요 구성 화합물에 의한 약물대사효소 및 약물수송단백 저해능 평가)

  • Ku, Hei-Young;Kim, Hyunmi;Shon, Ji-Hong;Liu, Kwang-Hyeon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.213-217
    • /
    • 2006
  • We evaluated the potential of major components of Phellodendri cortex to inhibit the activities of CYP2D6 and p-glycoprotein. The abilities of berberine, palmatine, limonin, and rutaecarpine to inhibit CYP2D6-mediated dextromethorphan O-demethylation and calcein AM accumulation were tested using human liver microsomes and L-MDR1 cell, respectively. Berberine strongly inhibited CYP2D6 isoform activity, whereas limonin and reuaecarpine did not. The $IC_{50}$ value of berberine was reduced after preincubation with microsomes in the presence of NADPH generating system, suggesting that berberine is a mechanism based inhibitor. In addition, all chemicals tested, didn't show inhibitory effect on p-glycoprotein activity. These results suggest that berberine has potential to inhibit CYP2D6 activity in vitro. Therefore, in vivo studies investigating the interactions between berberine and CYP2D6 substrates are necessary to determine whether inhibition of CYP2D6 activity by berberine is clinically relevant.

  • PDF

Inhibition of L-type Ca2+ current by ginsenoside Rd in rat ventricular myocytes

  • Lu, Cheng;Sun, Zhijun;Wang, Line
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.169-177
    • /
    • 2015
  • Background: Ginsenoside Rd (GSRd), one of the most abundant ingredients of Panax ginseng, protects the heart via multiple mechanisms including the inhibition of $Ca^{2+}$ influx.We intended to explore the effects of GSRd on L-type $Ca^{2+}$ current ($I_{Ca,L}$) and define the mechanism of the suppression of $I_{Ca,L}$ by GSRd. Methods: Perforated-patch recording and whole-cell voltage clamp techniques were applied in isolated rat ventricular myocytes. Results: (1) GSRd reduced $I_{Ca,L}$ peak amplitude in a concentration-dependent manner [half-maximal inhibitory concentration $(IC_{50})=32.4{\pm}7.1{\mu}mol/L$] and up-shifted the current-voltage (I-V) curve. (2) GSRd ($30{\mu}mol/L$) significantly changed the steady-state activation curve of $I_{Ca,L}$ ($V_{0.5}:-19.12{\pm}0.68$ vs. $-6.26{\pm}0.38mV$; n = 5, p < 0.05) and slowed down the recovery of $I_{Ca,L}$ from inactivation [the time content (${\zeta}$) from 91 ms to 136 ms, n = 5, p < 0.01]. (3) A more significant inhibitive effect of GSRd ($100{\mu}mol/L$) was identified in perforated-patch recording when compared with whole-cell recording [$65.7{\pm}3.2%$ (n = 10) vs. $31.4{\pm}5.2%$ (n = 5), p < 0.01]. (4) Pertussis toxin ($G_i$ protein inhibitor) completely abolished the $I_{Ca,L}$ inhibition induced by GSRd. There was a significant difference in inhibition potency between the two cyclic adenosine monophosphate elevating agents (isoprenaline and forskolin) prestimulation [$55{\pm}7.8%$ (n = 5) vs. $17.2{\pm}3.5%$ (n = 5), p < 0.01]. (5) 1H-[1,2,4]Oxadiazolo[4,3-a]-quinoxalin-1-one (a guanylate cyclase inhibitor) and N-acetyl-$\small{L}$-cysteine (a nitric oxide scavenger) partly recovered the $I_{Ca,L}$ inhibition induced by GSRd. (6) Phorbol-12-myristate-13-acetate (a protein kinase C activator) and GF109203X (a protein kinase C inhibitor) did not contribute to the inhibition of GSRd. Conclusion: These findings suggest that GSRd could inhibit $I_{Ca,L}$ through pertussis toxin-sensitive G protein ($G_i$) and a nitric oxide-cyclic guanosine monophosphate-dependent mechanism.

Biological Activities and the Metabolite Analysis of Camptotheca acuminata Dence.

  • Cho, Jwa Yeong;Park, Mi Jin;Ryu, Da Hye;Kang, Young-Hwa
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.14-14
    • /
    • 2018
  • This Camptotheca acuminata Decne. (CA), belonging to Nyssaceae, is a deciduous tree. and has been used as Traditional Chinese medicine since ancient times. The CA produces camptothecin a natural indole alkaloid, and reported to have anti-cancer effects. But the studies on biological activities of CA leaves are insufficient. Therefore, this study confirmed various biological activities such as antioxidant, antidiabetic, anticancer, antiinflammatory and metabolism analysis by HPLC-MS/MS of CA leaves. The $RC_{50}$ values of DPPH radical scavenging activity of ethyl acetate fraction, n-Butanol fraction, methanol extraction, water fraction and n-Hexane fraction were $12.23{\pm}0.01$, $15.93{\pm}0.42$, $55.12{\pm}0.45$, $56.29{\pm}4.15$ and $427.29{\pm}6.13ug/mL$, respectively. The $IC_{50}$ values of ${\alpha}$-glucosidase inhibitory activity of ethyl acetate fraction, n-Butanol fraction, methanol extraction, n-Hexane fraction and water fraction were $24.29{\pm}0.14$, $47.86{\pm}0.45$, $54.23{\pm}1.21$ $466.76{\pm}2.21$ and $623.91{\pm}9.67ug/mL$, respectively. The nitric oxide release activity of n-Hexane fraction, methanol extraction, ethyl acetate fraction, water fraction and n-Butanol fraction were $31.49{\pm}5.74$, $29.79{\pm}0.71$, $26.89{\pm}0.71$, $8.24{\pm}5.83$ and $7.75{\pm}4.08%$ at 25 ug/mL, respectively. The anti-cancer activity of n-Hexane fraction, methanol extraction, ethyl acetate fraction, water fraction and n-Butanol fraction were $31.49{\pm}5.74$, $29.79{\pm}0.71$, $26.89{\pm}0.71$, $8.24{\pm}5.83$ and $7.75{\pm}4.08%$ at 25 ug/mL, respectively. The ethyl acetate fraction activities showed higher biological activities than other fractions. Thus, Additional studies were conducted using ethyl acetate fraction. Metabolite analysis was performed using a LCMS-8040 triple quadrupole mass spectrometer. As a result, Five compounds (1-5) were identified in the ethyl acetate fraction of the CA leave. The identification of these compounds was generated by the analysis of fragmentation methods of the negative and positive ion modes. Five compounds were identified as gallic acid (1), chlorogenic acid (2), isoquercetin (3), astragalin (4) and camptothecin (5). These results suggest that the CA leave can be used for functional materials.

  • PDF