• Title/Summary/Keyword: IC&RC

Search Result 52, Processing Time 0.021 seconds

Changes of Ginsenosides and Physiochemical Properties in Ginseng by New 9 Repetitive Steaming and Drying Process (새로운 자동 구증구포방법에 의한 인삼사포닌의 변환 및 이화학적 특성)

  • Jin, Yan;Kim, Yeon-Ju;Jeon, Ji-Na;Wang, Chao;Min, Jin-Woo;Jung, Sun-Young;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • This study was conducted to investigate the contents of ginsenosides and physiochemical properties of Panax ginseng after 9 times steaming and drying treatment by using the new auto steamer which is more fast and simple than previous report. In the process of steaming and drying, the content of six major ginsenosides such as Rg1, Re, Rb1, Rc, Rb2 and Rd were gradually decreased. On the other hand, the content of seven minor ginsenosides includes Rh1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5 were gradually increased. We observed the protopanxadiol ginsenosides such as Rb1, Rb2, Rc and Rd were converted into 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5; similarly protopanxatriol ginsenosides of Rg1 and Re were converted into Rh1, 20(S)-Rg2 and 20(R)-Rg2. Based on the result of fresh ginseng, the contents of reducing sugar, acidic polysaccharide and total phenolic compounds were gradually increased and reached to maximum at 7 times repetitive steaming process of the fresh ginseng. Whereas DPPH radical scavenging activities were gradually decreased to 68% at 7 times steaming. New auto 9 repetitive steaming and drying process has similar production with original methods, but content of benzo(a)pyrene were not almost detected comparatively taking less time. The present results suggested that this method is best for the development of value-added ginseng industry related products.

Portable thermocouple thermometer on the nonlinearity compensation (비선형 특성을 보정한 휴대용 열전대 온도계)

  • Kim, Seong-Kuk;Song, Jae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 1995
  • A portable type K thermocouple thermometer is designed and fabricated to compensate the linearity to the high temperature $1000^{\circ}C$. The problems to be solved, which use a thermocouple thermometer are the compensation of the nonlinearity characters and reference compensation. The nonlinear character of the thermocouple is compensated, using an EPROM, and the reference compensation done using an IC AD595A. Before this compensation, there was the maximum error of $23.6^{\circ}C$(2.69%) at $876^{\circ}C$. However the results measured by the portable type K thermocouple thermometer fabricated show the character of the error of ${\pm}2^{\circ}C$(0.2%) in the range of the total temperature. This character satisfies the precision specifications of the type K thermal sensors in the range available $1000^{\circ}C$, which can be measured by the use of type K thermocouples. Therefore the portable type K thermocouple thermometer fabricated can be comparatively exactly used for the wide range of temperature of interest. Then this technique of compensating the nonlinear characters can be applied to the other kinds of thermal sensor compensation.

  • PDF

Antioxidant and α-Glucosidase Inhibitory Activities of Tradescantia pallida (Rose) Hunt Leaf Extract and Fractions (팔리다자주닭개비 잎 추출물 및 분획물의 항산화 및 α-글루코시다아제 저해 활성)

  • Kim, Ju Sung;Kim, Kyeoung Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.222-227
    • /
    • 2016
  • Background: The biological activities of Tradescantia pallida grown in Korea have not been well determined, thus the aim of this study was to investigate the possibility of using it as a medicinal plant. Methods and Results: To investigate the antioxidant activity, ${\alpha}$-glucosidase inhibitory effect and antimicrobial activity of T. pallida, we performed the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and reducing power assay. This assay for T. pallida leaf extract showed the highest antioxidant activity for the ethyl acetate fraction ($RC_{50}=14.55{\pm}0.16{\mu}g/m{\ell}$ and Abs = 0.613 at $300{\mu}g$). Further, the ethyl acetate fraction exhibited higher ${\alpha}$-glucosidase inhibitory effect with an $IC_{50}$ value of $14.1{\pm}0.1{\mu}g/m{\ell}$ and showed antimicrobial activity against gram positive bacteria (minimum inhibitory concentration = $1,000{\mu}g/m{\ell}$). Conclusions: The ethyl acetate fraction of the crude methanol extract of T. pallida showed remarkable antioxidant activity, ${\alpha}$-glucosidase inhibitory effects and antimicrobial activity. These activities might be related to the flavonoid content in the T. pallida leaf extract.

Antioxidative, Antimicrobial and Cytotoxic activities of Fagopyrum esculentum $M{\ddot{o}}ench$ Extract in Germinated Seeds (발아 메밀 추출물의 항산화.항균활성 및 세포독성)

  • Hwang, Eun-Ju;Lee, Sook-Young;Kwon, Su-Jung;Park, Min-Hee;Boo, Hee-Ock
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This research was conducted to investigate the possibilities of usage of germinated-buckwheat (Fagopyrum esculentum $M{\ddot{o}}ench$) by examining antioxidative, antimicrobial and cytotoxic effects of extracts from different germinated root length of buckwheat. Antioxidant activity $(RC_{50})$ was shown higher in extracts of non-germinated seed $(50.41\;{\mu}g/mL)$ and root length 10 mm $(80.57\;{\mu}g/mL)$, 2 mm $(93.77\;{\mu}g/mL)$, 5 mm $(107.09\;{\mu}g/mL)$ than BHT $(163.96\;{\mu}g/mL)$ as a synthetic antioxidant. In antimicrobial activity, non-germinated and germinated seeds were formed inhibitory zone against S. aureus $(4{\sim}10\;mm)$, P. aeruginosa $(2{\sim}9\;mm)$ at the concentrations of $10{\sim}40\;mg/mL$ but B. subtilis, E. coli and S. typhimurium were not apparent antimicrobial activity. Extracts of germinated seed also decreased their antimicrobial activity compared to non-germinated seed extract. In addition, the growth of Calu-6 was inhibited of both 5 mm root length germinated and non-germinated seeds $(800\;{\mu}g/mL)$ as 95.12% and 87.15%, respectively, but these did not show any influence on cytotoxic effect against MCF-7 and Caco-2 cell lines. Extracts of 2 mm and 5 mm germinated seeds were also inhibited against Calu-6 and SNU-601 cell lines.

Antioxidant Activities of Extract with Water and Ethanol of Perilla frutescens var. acuta kudo Leaf (차조기(Perilla frutescens var. acuta kudo) 잎의 물과 에탄올 추출물의 항산화 활성)

  • Kim, Mi-Hyang;Kang, Woo-Won;Lee, Nan-Hee;Kwoen, Dae-Jun;Choi, Ung-Kyu
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.327-333
    • /
    • 2007
  • This study was conducted to examine antioxidant activities of Perilla frutescens var. acuta leaf. For the this purpose, DPPH radical scavenging activity, lipid oxidation inhibition, SOD-like activity, and xanthine oxidase inhibitor activity of water extract, ethanol extracts (30, 50, 70, and 95%) and the fractions obtained from these extracts were determined. The electron donating abilities of the chloroform fraction obtained from the 70% and 95% ethanol extracts were 50%, and that of the ethyl acetate fraction for all of the extracts was above 75%. In particular, the electron donating ability of the ethyl acetate fraction of the 70% ethanol extract showed the greatest activity with 200.5 ppm of $RC_{50}$ value. The 70% ethanol extract was most effective to inhibit the automatic oxidation of linoleic acid at $40^{\circ}C$ storage. The highest inhibition effects appeared in the chloroform and ethyl acetate fractions of the water extract, and the 30, 50, and 70% ethanol extracts, and the highest lipid oxidation inhibiting effect of the 95% ethanol extract occurred in the hexane and acetate fractions. The SOD-like activity of the water extract was 30.3%, and the activities of the various concentration of ethanol extracts were 28-32% and the activity of the 70% ethanol extract was the highest. The SOD-like activity of the ethyl acetate fraction of the 70% ethanol extract was highest with 1,549.0 ppm of $RC_{50}$ value. Xanthine oxidase inhibition activity was greatest in the water extract and the activities of the ethanol extracts were 36-41.2%. The xanthine oxidase inhibition activity of the ethyl acetate fraction of the water extract was highest. In summary, we found that electron donating ability, lipid oxidation inhibition, and SOD-like activity of Perilla frutescens var. acuta leaf were greatest in the ethyl acetate fraction of the 70% ethanol extract, and xanthine oxidase inhibition activity was highest in the ethyl acetate fraction of the water extract.

Functional Biological Activity of Hot Water and Ethanol Extracts from Taraxaci Herba (포공영의 열수 및 에탄올 추출물의 기능적 생리활성)

  • Lim, Ae-Kyung;Kim, Jung-Ok;Jung, Mee-Jung;Jung, Hee-Kyoung;Hong, Joo-Heon;Kim, Dae-Ik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1231-1237
    • /
    • 2008
  • This study was conducted to investigate the functional biological effects of hot water and ethanol extracts from Taraxacum mongolicum (TM). Then, the hot water and ethanol extracts of TM were measured for total flavonoids content, total phenolics content, electron donating ability, nitrite-scavenging ability, SOD-like activity, tyrosinase inhibitory effect, and elastase inhibitory effect. Total flavonoids contents of hot water and ethanol extracts from TM were 7.80$\pm$0.97 mg/g and 9.12$\pm$0.51 mg/g, respectively, and total phenolics contents were estimated as 54.20$\pm$1.95 mg/g for water extract and 79.43$\pm$4.44 mg/g for ethanol extract. The $RC_{50}$ values for electron donating ability of hot water and ethanol extracts were 943.98 $\mu$g/mL and 309.41 $\mu$g/mL. SOD-like activity and nitrite-scavenging ability were dependent on concentration of hot water and ethanol extracts, and the activity of ethanol extract was higher than that of hot water extract. However, hot water and ethanol extracts from TM showed no inhibitory activities on the elastase and tyrosinase inhibitory activities. Based on the above results, the ethanol extract of TM seems to be the most pertinent for use as functional food and cosmetic.

A Study on the Cobalt Electrodeposition of High Aspect Ratio Through-Silicon-Via (TSV) with Single Additive (단일 첨가제를 이용한 고종횡비 TSV의 코발트 전해증착에 관한 연구)

  • Kim, Yu-Jeong;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.140-140
    • /
    • 2018
  • The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.

  • PDF

Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells

  • Yu, Jae Sik;Roh, Hyun-Soo;Baek, Kwan-Hyuck;Lee, Seul;Kim, Sil;So, Hae Min;Moon, Eunjung;Pang, Changhyun;Jang, Tae Su;Kim, Ki Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.562-570
    • /
    • 2018
  • Background: Lung cancer is the leading cause of cancer-related death worldwide. In this study, we used a bioactivity-guided isolation technique to identify constituents of Korean Red Ginseng (KRG) with antiproliferative activity against human lung adenocarcinoma cells. Methods: Bioactivity-guided fractionation and preparative/semipreparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) after treatment with KRG extract fractions and constituents thereof were assessed using the water-soluble tetrazolium salt (WST-1) assay and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. Caspase activation was assessed by detecting its surrogate marker, cleaved poly adenosine diphosphate (ADP-ribose) polymerase, using an immunoblot assay. The expression and subcellular localization of apoptosis-inducing factor were assessed using immunoblotting and immunofluorescence, respectively. Results and conclusion: Bioactivity-guided fractionation of the KRG extract revealed that its ethyl acetate-soluble fraction exerts significant cytotoxic activity against all human lung cancer cell lines tested by inducing apoptosis. Chemical investigation of the ethyl acetatesoluble fraction led to the isolation of six ginsenosides, including ginsenoside Rb1 (1), ginsenoside Rb2 (2), ginsenoside Rc (3), ginsenoside Rd (4), ginsenoside Rg1 (5), and ginsenoside Rg3 (6). Among the isolated ginsenosides, ginsenoside Rg3 exhibited the most cytotoxic activity against all human lung cancer cell lines examined, with $IC_{50}$ values ranging from $161.1{\mu}M$ to $264.6{\mu}M$. The cytotoxicity of ginsenoside Rg3 was found to be mediated by induction of apoptosis in a caspase-independent manner. These findings provide experimental evidence for a novel biological activity of ginsenoside Rg3 against human lung cancer cells.

Biological Activities and the Metabolite Analysis of Camptotheca acuminata Dence.

  • Cho, Jwa Yeong;Park, Mi Jin;Ryu, Da Hye;Kang, Young-Hwa
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.14-14
    • /
    • 2018
  • This Camptotheca acuminata Decne. (CA), belonging to Nyssaceae, is a deciduous tree. and has been used as Traditional Chinese medicine since ancient times. The CA produces camptothecin a natural indole alkaloid, and reported to have anti-cancer effects. But the studies on biological activities of CA leaves are insufficient. Therefore, this study confirmed various biological activities such as antioxidant, antidiabetic, anticancer, antiinflammatory and metabolism analysis by HPLC-MS/MS of CA leaves. The $RC_{50}$ values of DPPH radical scavenging activity of ethyl acetate fraction, n-Butanol fraction, methanol extraction, water fraction and n-Hexane fraction were $12.23{\pm}0.01$, $15.93{\pm}0.42$, $55.12{\pm}0.45$, $56.29{\pm}4.15$ and $427.29{\pm}6.13ug/mL$, respectively. The $IC_{50}$ values of ${\alpha}$-glucosidase inhibitory activity of ethyl acetate fraction, n-Butanol fraction, methanol extraction, n-Hexane fraction and water fraction were $24.29{\pm}0.14$, $47.86{\pm}0.45$, $54.23{\pm}1.21$ $466.76{\pm}2.21$ and $623.91{\pm}9.67ug/mL$, respectively. The nitric oxide release activity of n-Hexane fraction, methanol extraction, ethyl acetate fraction, water fraction and n-Butanol fraction were $31.49{\pm}5.74$, $29.79{\pm}0.71$, $26.89{\pm}0.71$, $8.24{\pm}5.83$ and $7.75{\pm}4.08%$ at 25 ug/mL, respectively. The anti-cancer activity of n-Hexane fraction, methanol extraction, ethyl acetate fraction, water fraction and n-Butanol fraction were $31.49{\pm}5.74$, $29.79{\pm}0.71$, $26.89{\pm}0.71$, $8.24{\pm}5.83$ and $7.75{\pm}4.08%$ at 25 ug/mL, respectively. The ethyl acetate fraction activities showed higher biological activities than other fractions. Thus, Additional studies were conducted using ethyl acetate fraction. Metabolite analysis was performed using a LCMS-8040 triple quadrupole mass spectrometer. As a result, Five compounds (1-5) were identified in the ethyl acetate fraction of the CA leave. The identification of these compounds was generated by the analysis of fragmentation methods of the negative and positive ion modes. Five compounds were identified as gallic acid (1), chlorogenic acid (2), isoquercetin (3), astragalin (4) and camptothecin (5). These results suggest that the CA leave can be used for functional materials.

  • PDF

Effects of Ginsenoside Metabolites on GABAA Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Choi, Sun-Hye;Shin, Tae-Joon;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Kim, Byung-Ju;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In a previous report, we demonstrated that ginsenoside Rc, one of major ginsenosides from Panax ginseng, enhances ${\gamma}$-aminobutyric acid (GABA) $receptor_A$ ($GABA_A$)-mediated ion channel currents. However, little is known about the effects of ginsenoside metabolites on $GABA_A$ receptor channel activity. The present study investigated the effects of ginsenoside metabolites on human recombinant $GABA_A$ receptor (${\alpha}_1{\beta}_1{\gamma}_{2s}$) channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. M4, a metabolite of protopanaxatriol ginsenosides, more potently inhibited the GABA-induced inward peak current ($I_{GABA}$) than protopanaxadiol (PPD), a metabolite of PPD ginsenosides. The effect of M4 and PPD on $I_{GABA}$ was both concentration-dependent and reversible. The half-inhibitory concentration ($IC_{50}$) values of M4 and PPD were 17.1${\pm}$2.2 and 23.1${\pm}$8.6 ${\mu}M$, respectively. The inhibition of $I_{GABA}$ by M4 and PPD was voltage-independent and non-competitive. This study implies that the regulation of $GABA_A$ receptor channel activity by ginsenoside metabolites differs from that of ginsenosides.