• Title/Summary/Keyword: IBN

Search Result 228, Processing Time 0.024 seconds

Investigations of Temperature Effect on the Conduction Mechanism of Electrical Conductivity of Copolymer/Carbon Black Composite

  • El Hasnaoui, M.;Kreit, L.;Costa, L.C.;Achour, M.E.
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.121-125
    • /
    • 2017
  • This study deals the prediction of temperature effect on low-frequency dispersion of alternating current (AC) conductivity spectra of composite materials based on copolymer reinforced with carbon black (CB) particles. A sample of ethylene butylacrylate loaded with 13% of CB particles were prepared and investigated using the impedance spectroscopy representation in the frequency range from 40 Hz to 0.1 MHz and temperature range from $20^{\circ}C$ to $125^{\circ}C$. The dielectric constant, ${\varepsilon}^{\prime}$, and dielectric losses, ${\varepsilon}^{{\prime}{\prime}}$, were found to decrease with increasing frequency. The frequency dependence of the AC conductivity follows the universal power law with a large deviation in the high frequency region, the positive temperature coefficient in resistivity effect has been observed below the melting temperature which makes this composite potentially remarkable for industrial applications.

Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix

  • Belmahi, Samir;Zidour, Mohamed;Meradjah, Mustapha;Bensattalah, Tayeb;Dihaj, Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.517-525
    • /
    • 2018
  • In this study, we investigate the vibration of single-walled carbon nanotubes embedded in a polymeric matrix using nonlocal elasticity theories with account arbitrary boundary conditions effects. A Winkler type elastic foundation is employed to model the interaction of nanobeam and the surrounding elastic medium. Influence of all parameters such as nonlocal small-scale effects, Winkler modulus parameter, vibration mode and aspect ratio of nanobeam on the vibration frequency are analyzed and discussed. The mechanical properties of carbon nanotubes and polymer matrix are treated and an analytical solution is derived using the governing equations of the nonlocal Euler-Bernoulli beam models. Solutions have been compared with those obtained in the literature and The results obtained show that the non-dimensional natural frequency is significantly affected by the small-scale coefficient, the vibrational mode number and the elastic medium.

Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT

  • Chikh, Abdelbaki;Tounsi, Abdelouahed;Hebali, Habib;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.289-297
    • /
    • 2017
  • This work presents a simplified higher order shear deformation theory (HSDT) for thermal buckling analysis of cross-ply laminated composite plates. Unlike the existing HSDT, the present one has a new displacement field which introduces undetermined integral terms and contains only four unknowns. Governing equations are derived from the principle of the minimum total potential energy. The validity of the proposed theory is evaluated by comparing the obtained results with their counterparts reported in literature. It can be concluded that the proposed HSDT is accurate and simple in solving the thermal buckling behavior of laminated composite plates.

Interfacial stresses in RC beam bonded with a functionally graded material plate

  • Daouadji, Tahar Hassaine;Chedad, Abdebasset;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.693-705
    • /
    • 2016
  • Functionally graded material (FGM) plates can be bonded to the soffit of a beam as a means of retrofitting the RC beam. In such plated beams, tensile forces develop in the bonded plate and these have to be transferred to the original beam via interfacial shear and normal stresses. In this paper, an interfacial stress analysis is presented for simply supported concrete beam bonded with a functionally graded material FGM plate. This new solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behavior of the interface and design of the FGM-RC hybrid structures.

Thermal buckling of functionally graded plates using a n-order four variable refined theory

  • Abdelhak, Z.;Hadji, L.;Daouadji, T.H.;Bedia, E.A.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.31-44
    • /
    • 2015
  • This paper presents a simple n-order four variable refined theory for buckling analysis of functionally graded plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and eliminates the shear stresses at the top and bottom surfaces. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present n-order refined theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling are all discussed.

Static bending and free vibration of FGM beam using an exponential shear deformation theory

  • Hadji, L.;Khelifa, Z.;Daouadji, T.H.;Bedia, E.A.
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.99-114
    • /
    • 2015
  • In this paper, a refined exponential shear deformation beam theory is developed for bending analysis of functionally graded beams. The theory account for parabolic variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Contrary to the others refined theories elaborated, where the stretching effect is neglected, in the current investigation this so-called "stretching effect" is taken into consideration. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Analytical solutions for static are obtained. Numerical examples are presented to verify the accuracy of the present theory.

A n-order refined theory for bending and free vibration of functionally graded beams

  • Hadji, Lazreg;Daouadji, T. Hassaine;Tounsi, A.;Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.923-936
    • /
    • 2015
  • In this paper, a simple n-order refined theory based on neutral surface position is developed for bending and frees vibration analyses of functionally graded beams. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Bedia, E.A. Adda
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.413-429
    • /
    • 2016
  • A theoretical method to predict the interfacial stresses in the adhesive layer of reinforced concrete beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The analysis provides efficient calculations for both shear and normal interfacial stresses in reinforced concrete beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the reinforced concrete beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

Numerical study on the effects of seismic torsional component on multistory buildings

  • Ouazir, Abderrahmane;Hadjadj, Asma;Benanane, Abdelkader
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • In this paper, the influence of the rotational component, about a vertical axis, of earthquake ground motion on the response of building structures subjected to seismic action is considered. The torsional component of ground motion is generated from the records of translational components. Torsional component of ground motion is then, together with translational components, applied in numerical linear dynamic analysis of different reinforced concrete framed structure of three stories buildings. In total, more than 40 numerical models were created and analyzed. The obtained results show clearly the dependence of the effects of the torsional seismic component on structural system and soil properties. Thus, the current approach in seismic codes of accounting for the effects of accidental torsion due to the torsional ground motion, by shifting the center of mass, should be reevaluated.

Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is developed to study the effect of the distribution shape of porosity on static behavior of FG plates. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal and shear stress. It can be concluded that the proposed theory is simple and precise for the resolution of the behavior of flexural FGM plates resting on elastic foundations while taking into account the shape of distribution of the porosity.