• Title/Summary/Keyword: IBAD template

Search Result 35, Processing Time 0.026 seconds

Reel-to-reel electropolishing of Ni alloy tapes for IBAD template (IBAD template용 니켈 합금의 연속 전해연마)

  • Ha H. S;Kim H. K;Ko R. K;Kim H. S;Song K. J;Park C;Yoo S. I;Joo J. H;Moon S. H
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.69-73
    • /
    • 2004
  • Ni alloy tape is electropolished to be used as a metal substrate for fabrication of IBAD (ion-Beam Assisted Deposition)-MgO texture template fur HTS coated conductor. Electropolishing is needed to obtain a very smooth surface of Ni alloy tape because the in-plane texture of templates is sensitive to the roughness of metal substrate. The critical current of YBCO coated conductor depends on the texture of YBCO that depends on the texture of the IBAD MgO layer. And so the smoothness of the metal substrate is directly related to the superconducting properties of the coated conductor. In this study, we have prepared a reel-to-reel electropolishing apparatus to polish the Ni alloy tapes for IBAD. Various electropolishing conditions were investigated to improve the surface roughness. Hastelloy tape is continuously electropolished with high polishing current density (0.5 ∼ 2 A/$\textrm{cm}^2$) and fast processing time (1 ∼ 3 min). Polished hastelloy tapes have surface roughness(RMS) of below 1 nm on a 5 ${\times}$ 5 $\mu\m^2$ from AFM and SEM.

  • PDF

Growth and characterization of oxide buffer layer on IBAD_MgO template for HTS coated conductors (박막형 고온초전도 선재를 위한 산화물 완충층의 IBAD_MgO 기판에서의 성장과 특성)

  • Ko, Rock-Kil;Jang, Se-Hoon;Ha, Hong-Soo;Kim, Ho-Sup;Song, Kyu-Jeong;Ha, Dong-Woo;Oh, Sang-Soo;Park, Chan;Moon, Seung-Hyun;Kim, Young-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.297-297
    • /
    • 2008
  • Buffer layers play an important role in the development of high critical current density coated conductor. $LaMnO_3$, $SrTiO_3$ and $BaZrO_3$ buffer layers were compatible with MgO surfaces and also provide a good template for growing high current density REBCO(RE=Rare earth) films. Systematic studies on the influences of pulsed laser deposition parameters (deposition temperature, deposition pressure, processing gas, laser energy density, etc.) on microstructure and texture properties of $LaMnO_3$, $SrTiO_3$ and $BaZrO_3$ films as buffer layer deposited on ion-beam assisted deposition MgO (IBAD_MgO) template by pulse laser deposition method, were carried out. These results will be presented together with the discussion on the possible use of this material in HTS coated conductor as buffer.

  • PDF

Fabrication of SmBCO Coated Conductors using IBAD-MgO Template (IBAD-MgO 템플릿을 이용한 SmBCO 박막선재의 제조)

  • Ha, Hong-Soo;Kim, Ho-Sup;Yang, Ju-Saeng;Jung, Yae-Hyun;Kim, Ho-Kyum;Yoo, Kwon-Kuk;Ko, Rock-Kil;Song, Kyu-Jeong;Ha, Dong-Woo;Oh, Sang-Soo;Yeom, Do-Jun;Park, Chan;Yoo, Sang-Im;Moon, Seong-Hyun;Joo, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.30-31
    • /
    • 2006
  • We have fabricated SmBCO coated conductor on IBAD-MgO substrates using unique co-evaporation method. The batch type co-deposition system was specially designed and named as EDDC(evaporation using drum m dual chamber) that is possible to deposit superconducting layer with different composition ratio at low temperature of $700^{\circ}C$. In this study, we have investigated the influence of SmBCO phase composition and texture of IBAD-MgO template on the critical current density. We have changed the deposition rates of Sm, Ba and Cu during co-evaporation to examine the optimal composition ratio shown better critical current density. The composition ratio and surface morphology of SmBCO coated conductors were analyzed by the EDX and SEM, respectively. A higher critical current density was measured at superconducting phase composition ratio of Ba deficiency, Sm or Cu rich compared to the Sm1Ba2Cu3Ox stoichiometry.

  • PDF

Low temperature deposition of LaMnO3 on IBAD-MgO template assisted by plasma (IBAD-MgO 기판상에 플라즈마를 이용한 LaMnO3 저온 증착)

  • Kim, H.S.;Oh, S.S.;Ha, D.W.;Ha, H.S.;Ko, R.K.;Moon, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.1-3
    • /
    • 2012
  • LMO($LaMnO_3$) buffer layer of superconducting coated conductor was deposited on IBAD-MgO template in the plasma atmosphere at $650^{\circ}C$ which is relatively low compared with conventional deposition temperature of more than $800^{\circ}C$. Deposition method of LMO was DC sputtering, and target and deposition chamber were connected to the cathode and anode respectively. When DC voltage was applied between target and chamber, plasma was formed on the surface of target. The tape substrate was located with the distance of 10 cm between target and tape substrate. When anode bias was connected to the tape substrate, electrons were attracted from plasma in target surface to the tape substrate, and only tape substrate was heated by electron bombardment without heating any other zone. The effect of electron bombardment on the surface of substrate was investigated by increasing bias voltage to the substrate. We found out that the sample of electron bombardment had the effect of surface heating and had good texturing at low controlling temperature.

Comparative study of various buffer layers on IBAD- MgO template (IBAD-MgO 기판 위 다양한 완충층들의 비교 연구)

  • Ko, K.P.;Jang, K.S.;Yoo, S.I.;Oh, S.S.;Ko, R.K.;Moon, S.H.;Kim, H.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.5-8
    • /
    • 2008
  • On highly-textured IBAD-MgO templates, we have tried to find proper buffer layers among various candidate materials, including $LaMnO_3$ (LMO), $La_2Zr_2O_7$ (LAO), $LaAlO_3$ (LAO), $LaGaO_3$ (LGO), $NdGaO_3$ (NGO), and $BaZrO_3$ (BZO). All buffer layers were deposited on the IBAD-MgO templates by KrF pulsed laser deposition(PLD). LAO layer showed an armorphous phase. LZO, LGO, and NGO layers showed polycrystalline growth. Only LMO and BZO layers exhibited c-axis oriented biaxially textured films. Optimally processed LMO buffer layer at deposition temperature of $750^{\circ}C$ and $PO_2$ of 100mTorr exhibited ${\triangle}{\phi}$ value of ${\sim}-5.2^{\circ}$ and RMS roughness of 5.6nm. Interestingly, BZO buffer layers with ${\triangle}{\phi}$ values of ${\sim}-6^{\circ}$ could be routinely produced over a wide PLD processing condition.