• Title/Summary/Keyword: IAA oxidase

Search Result 23, Processing Time 0.019 seconds

Change of Sprouting-related Enzymes Activities and Food Quality Characteristics of Sweetpotato Root (Ipomea batatas Lam.) by Electron Beam Irradiation (전자빔 조사에 의한 고구마의 발아관련 효소의 활성과 식품특성 변화)

  • Lim, Sung Jin;Song, Mi Seon;Lee, Gyeong Ae;Cho, Jae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.4
    • /
    • pp.267-272
    • /
    • 2012
  • We investigated that electron beam irradiation is the effective method to control the sprouting of sweetpotato roots without changing of food quality characteristics. In 12 and $25^{\circ}C$ storage after electron beam irradiation, all control samples were sprouted from 6 and 4 weeks after storage, respectively. The sprouting rate of control increased with time and the rate reached to 11.2-12.4 and 70.5-74.2% at 8 weeks after 12 and $25^{\circ}C$ storage. Also, the sprouting of middle and below positioning sweetpotato roots at 12 and $25^{\circ}C$ storage after irradiation reached to 8.6-11.3 and 42.7-48.7% after a storage period of 8 weeks, respectively. However, the sprouting of all sweetpotato roots stored at $4^{\circ}C$ and upper (0-7 cm) positioning samples of box stored at 12 and $25^{\circ}C$ with electron beam was completely inhibited due to increase peroxidase and indole acetic acid (IAA) oxidase activity. Also, all samples with electron beam such as hardness, pH, sugar content, weight loss, and vitamin C and dacarotene content did not differ from that of the control. Therefore, if electron beam will be irradiated to sweetpotato roots above 0.1 kGy before packing, it will effectively inhibit their sprouting stored at $25^{\circ}C$ without the change of food quality characteristics.

The Effect of Oligosaccharides on Ethylene Production in Mung Bean (Vigna radiata W.) Hypocotyl Segments

  • Choy, Yoon-Hi;Lee, Dong-Hee;Lee, June-Seung
    • Journal of Plant Biology
    • /
    • v.39 no.4
    • /
    • pp.295-300
    • /
    • 1996
  • The physiological effects of oligogalacturonic acid (OGA:D. P. 6-7), a product of acid hydrolysis of polygalacturonic acid (PGA), on ethylene biosynthesis in mung bean (Vigna radiata W.) hypocotyl segments was studied. Among PGA, OGA and monogalacturomic acid (MGA), only OGA stimulated ethylene production in mung bean hypocotyl segments, and the most effective concentraton of OGA was 50$\mu\textrm{g}$/mL. Time course data indicated that this stimulatiion effect of OGA appeared after 90 min incubation period and continued until 24 h. When indol-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) were treated with OGA to investigate the mechanism of OGA on ethylene production, they did not show synergistic effects on ethylene production. The stimulation of ethylene production by OGA was due to the increase of in vivo ACC synthase activity, but OGA treatment had no effect of in vivo ACC oxidase activity. The effect of aminoethoxy vinyl glycine (AVG) and Co2+, the inhibitor of ethylene synthesis, was siminished a little by the OGA, but the treatment of Ca2+, known to increase ACC, with OGA did not increase the ethylene production, this effect seems to be specific for Ca2+ because other divalent cation, Mg2+, did not show the inhibition of OGA-indyuced ethylene production. It is possible that the OGA adopts a different signal transduction pathway to the ethylene bioxynthesis.

  • PDF

Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri)

  • Yakkou, Lamia;Houida, Sofia;Dominguez, Jorge;Raouane, Mohammed;Amghar, Souad;Harti, Abdellatif El
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.391-402
    • /
    • 2021
  • Earthworms play an important role in soil fertilization, interacting continually with microorganisms. This study aims to demonstrate the existence of beneficial microorganisms living in the earthworm's immune system, the coelomic fluid. To achieve this goal, a molecular identification technique was performed, using cytochrome c oxidase I (COI) barcoding to identify abundant endogenic earthworms inhabiting the temperate zone of Rabat, Morocco. Then, 16S rDNA and ITS sequencing techniques were adopted for bacteria and fungi, respectively. Biochemical analysis, showed the ability of bacteria to produce characteristic enzymes and utilize substrates. Qualitative screening of plant growth-promoting traits, including nitrogen fixation, phosphate and potassium solubilization, and indole acetic acid (IAA) production, was also performed. The result of mitochondrial COI barcoding allowed the identification of the earthworm species Aporrectodea molleri. Phenotypic and genotypic studies of the sixteen isolated bacteria and the two isolated fungi showed that they belong to the Pseudomonas, Aeromonas, Bacillus, Buttiauxella, Enterobacter, Pantoea, and Raoultella, and the Penicillium genera, respectively. Most of the isolated bacteria in the coelomic fluid showed the ability to produce β-glucosidase, β-glucosaminidase, Glutamyl-β-naphthylamidase, and aminopeptidase enzymes, utilizing substrates like aliphatic thiol, sorbitol, and fatty acid ester. Furthermore, three bacteria were able to fix nitrogen, solubilize phosphate and potassium, and produce IAA. This initial study demonstrated that despite the immune property of earthworms' coelomic fluid, it harbors beneficial microorganisms. Thus, the presence of resistant microorganisms in the earthworm's immune system highlights a possible selection process at the coelomic fluid level.