• Title/Summary/Keyword: IAA degradation system

Search Result 2, Processing Time 0.017 seconds

Effects of low temperature on the IAA degradation system in etiolated pea(Pisum sativum L. var. Sparkle) seedlings (백색 완두유묘의 IAA분해효소계에 미치는 저온의 영향)

  • Park, Ro-Dong;Shin, Yong-Kwang;Kim, Kwang-Sik;Park, Chang-Kyu
    • Applied Biological Chemistry
    • /
    • v.33 no.2
    • /
    • pp.125-128
    • /
    • 1990
  • Previous work has shown that the levels of free and total IAA and tryptophan decrease on exposing etiolated pea (Pisum sativum L. var. Sparkle) seedlings grown at $25^{\circ}C$ to $5^{\circ}C$ for 3 days, suggesting that low temperature down-regulates the level of endogenous IAA, in part, by reducing tryptophan biosynthesis. To understand, in this study, the effect of low temperature on the regulation of IAA degradation system in etiolated pea seedlings, enzyme levels of IAA degradation system and hydrogen peroxide content were analyzed during and after chilling($5^{\circ}C$) 6-day-old pea seedlings grown at $25^{\circ}C$. The levels of IAA oxidase and peroxidase increased during chilling and gradually restored to the level of control on termination of chilling. Catalase levels decreased upon chilling and increased to the level of control on termination of chilling. $H_2O_2$ was accumulated during chilling up to the level of $5.5\;{\mu}mol/g$ fresh weight while at $25^{\circ}C$ maintained a relatively constant $H_2O_2$ level of $4\;{\mu}mol/g$ FW. All together, it appears that low temperature, in part, by increasing enzyme levels of IAA degradation system and accumulating $H_2O_2$, down-regulates endogenous level of IAA in etiolated pea shoots.

  • PDF

Dehydroglyasperin D Suppresses Melanin Synthesis through MITF Degradation in Melanocytes

  • Baek, Eun Ji;Ha, Yu-Bin;Kim, Ji Hye;Lee, Ki Won;Lim, Soon Sung;Kang, Nam Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.982-988
    • /
    • 2022
  • Licorice (Glycyrrhiza) has been used as preventive and therapeutic material for hyperpigmentation disorders. Previously, we isolated noble compounds including dehydroglyasperin C (DGC), dehydroglyasperin D (DGD) and isoangustone A (IAA) from licorice hexane/ethanol extracts. However, their anti-melanogenic effects and underlying molecular mechanisms are unknown. The present study compared effects of DGC, DGD and IAA on pigmentation in melan-a melanocytes and human epidermal melanocytes (HEMn). DGD exerted the most excellent anti-melanogenic effect, followed by DGC and IAA at non-cytotoxic concentrations. In addition, DGD significantly inhibited tyrosinase activity in vitro cell-free system and cell system. Western blot result showed that DGD decreased expression of microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1 (TRP-1) in melan-a cells and HEMn cells. DGD induced phosphorylation of MITF, ERK and Akt signal pathway promoting MITF degradation system. However, DGD did not influence p38 and cAMP-dependent protein kinase (PKA)/CREB signal pathway in melan-a cells. These result indicated that DGD inhibited melanogenesis not only direct regulation of tyrosinase but also modulating intracellular signaling related with MITF level. Collectively, these results suggested a protective role for DGD against melanogenesis.