• Title/Summary/Keyword: I$\kappa$B$\alpha$

Search Result 510, Processing Time 0.029 seconds

Compound K, a Metabolite of Ginsenoside Rb1, Inhibits Passive Cutaneous Anaphylaxis Reaction in Mice

  • Bae, Eun-Ah;Trinh, Hien Trung;Yoon, Hae-Kyung;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • To understand the anti-allergic mechanism of compound K, which is a metabolite of ginsenoside Rb1, a main constituent of the root of Panax ginseng C.A. Meyer (family Araliaceae), its inhibitory effect against IgE-antigen complex IAC)-induced passive cutaneous anaphylaxis (PCA) reaction in mice and mRNA and protein expressions of allergic cytokines in lAC-stimulated RBL-2H3 cells were investigated. Orally administered ginsenoside Rb1 more potently inhibited PCA reaction when administered at 5 h prior to the lAC treatment than when administered at I h before. However, compound K orally administered 1 h before lAC treatment showed a more potent anti-PCA reaction effect than when treated at 5 h before. Orally administered ginsenoside Rb1 more potently inhibited PCA reaction induced by lAC in mice than intraperitoneally treated one, apart from orally administered its metabolite, compound K, which was more potent than the orally administered one. The compound K, a metabolite of ginsenoside Rb1, inhibited mRNA and protein expressions of IL-4 and TNF-${\alpha}$ and the activation of their transcription factor NF-$\kappa$B and MAPK in lAC-stimulated RBL-2H3 cells. These findings suggest that orally administered ginsenoside Rb1 may be dependent on its metabolism by intestinal microflora in the intestine and the compound K may improve allergic diseases by the inhibition of IL-4 and TNF-${\alpha}$ expresseion.

THI 52 Inhibits Inducible Nitric Oxide Synthase Gene Expression in RAW 264.7 Cells and Rat Lung Tissue by Lipopolysaccharide

  • Lee, Bog-Kyu;Park, Min-Kyu;Seo, Han-Geuk;YunChoi, Hye-Sook;Lee, Duck-Hyung;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.443-449
    • /
    • 2001
  • Previously we reported that THI 52 inhibits tumor necrosis factor $(TNF)-{\alpha}$ mRNA expression in mouse peritoneal macrophages exposed to LPS plus $IFN-{\gamma}.$ In the present study, the effects of THI 52 on vascular reactivity ex vivo, and iNOS protein expression (rat lung) were investigated in LPS-treated rats. Treatment of THI 52 concentration-dependently reduced not only serum nitrite production but also the expression of iNOS protein in rat lung tissues. Thoracic aorta taken from LPS injected rat for 8 h ex vivo resulted in suppression of vasoconstrictor effects to phenylephrine (PE), which was restored by THI 52 (20 mg/kg) 30 min prior to LPS. When measured iNOS activity, treatment of THI 52 concentration-dependently reduced the enzyme activity in RAW 264.7 cells activated with LPS plus $IFN-{\gamma}.$ Likewise, iNOS activity was significantly reduced in lung tissues taken those rats that were injected THI 52 prior to LPS injection compared with LPS injection alone. These results strongly suggest that THI 52 can suppress iNOS gene expression induced by LPS, and restore the vascular contractility to PE. Thus, THI 52, a new synthetic isoquinoline alkaloid, may be beneficial in inflammatory disorders where production of NO is excessed by iNOS expression.

  • PDF

Anti-inflammatory effects of the fermentation extracts consisting of soybean, red ginseng and Citrus Unshiu Peel (대두, 홍삼, 진피로 구성된 발효 추출물의 항염증 효능에 관한 연구)

  • Lee, Jong Rok;Kim, Young Woo;Byun, Sung Hui;Kim, Sang Chan;Park, Sook Jahr
    • The Korea Journal of Herbology
    • /
    • v.30 no.5
    • /
    • pp.59-65
    • /
    • 2015
  • Objectives : Fermentation of herbs has been known to be helpful in improving the immune systems and protecting body against disease. The present study was conducted to evaluate anti-inflammatory effects of the fermentation extracts (FE) consisting of soybean, red ginseng andCitrus UnshiuPeel in lipopolysaccharide (LPS)-activated Raw264.7 cells.Methods : FE were prepared by the fermentation withBacillus Subtilisand then by extraction with ethanol (95%; prepared by the fermentation process). Cell viability was measured by MTT assay. Nitric oxide (NO) production was measured in culture media by Griess assay. The expression of nuclear factor (NF)-κB and inhibitory kappa B alpha (IκBα) was determined by Western blot.Results : LPS-induced production of NO and PGE2was dose-dependently decreased by the treatment of FE in Raw264.7 cells. These suppressive effects of FE on NO and PGE2production were related to the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. FE inhibited LPS-induced production of pro-inflammatory cytokines, TNF-α, IL-6, and IL-1βin a dose-dependent manner. Furthermore, FE inhibited the NF-κB signaling pathway through the prevention of LPS-induced degradation of IκBαin cytosol and the nuclear translocation of NF-κB.Conclusions : These findings suggest that FE could have anti-inflammatory effects on LPS-induced inflammatory responses in macrophages.

Cnestis palala (Lour.) Merr. extract suppresses Propionibacterium acnes-induced inflammation (Propionibacterium acnes에 의해 유도되는 염증반응에서 Cnestis palala (Lour.) Merr. 추출물의 억제효과)

  • Shin, Jin Hak;Lee, Eun Hye;Kim, Seon Sook;Sydara, Kongmany;Seo, Su Ryeon
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.38-45
    • /
    • 2018
  • Acne is an inflammatory skin disease that occurs in puberty and young people. Propionibacterium acnes (P. acnes) is known to be a major cause of inflammation in acne. P. acnes proliferates within hair follicles blocked by overproduced sebum in the skin, and thereby activates monocytic cells to promote the secretion of pro-inflammatory cytokines. In this study, we investigated the possibility of Cnestis palala (Lour.) Merr. extract to diminish P. acnes-mediated inflammatory responses. We found that C. palala extract significantly attenuated P. acnes-induced pro-inflammatory cytokine expressions, such as $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, iNOS, and COX-2 in mouse macrophage RAW264.7 cells. Moreover, we observed that C. palala extract inhibited $NF-{\kappa}B$ transcriptional activation, which is the major transcription factor of inflammatory cytokine expression. Therefore, it is expected that C. palala extract has a potential as a therapeutic agent or supplement for the treatment P. acnes-induced inflammatory responses.

Evaluation of Evodiae Fructus Extract on the Chronic Acid Reflux Esophagitis in Rats (오수유(吳茱萸) 추출물이 만성 역류성 식도염 흰쥐에 미치는 효능 평가)

  • Lee, Jin A;Park, Hae-Jin;Kim, Soo Hyun;Kim, Min Ju;Kim, Kyeong Jo;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.34 no.2
    • /
    • pp.15-23
    • /
    • 2019
  • Objective : Reflux esophagitis (RE) is a disease that caused gastric acid reflux and inflammation due to unstable gastroesophageal sphincter, as increasing worldwide respectively. This study was conducted to evaluate the effect of Evodiae Fructus (EF) extract on chronic reflux esophagitis in rats. Methods : The EF was measured antioxidant activity, such as total polyphenol and total flavonoid contents, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and 2, 2'-azinobis-3-ethyl-enzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Rats were divided into 3 groups; Nor (normal group), Con (chronic acid reflux esophagitis rats treatment with water), EF (chronic acid reflux esophagitis rat treatment with EF 200 mg/kg body weight group). A surgically-induced chronic acid reflux esophagitis (CARE) model was established in SD rats, and treated with water or EF 200 mg/kg body weight for 14 consecutive days. Results : Administration of EF to rats of induction of chronic acid reflux esophagitis was found to reduce esophagus tissues injury. Reactive oxygen species (ROS) and produces peroxynitrite ($ONOO^-$) levels of esophagus tissues were significantly decreased in EF compared to Con group. As results of esophagus protein analyses, EF effectively reduce inflammatory-related factors ($NF-{\kappa}Bp65$, $p-I{\kappa}B{\alpha}$, iNOS, $TNF-{\alpha}$, IL-6), and increase anti-oxidant enzyme (Nrf2, HO-1, SOD, catalase, GPx-1/2). Conclusions : These results suggest that EF administration comfirmed that decreased esophagus tissues injury, oxidantive stress, anti-inflammation effect, and increased anti-oxidant effect. Therefore, EF was the potential to be used as a natural therapeutic drug.

Protective Effects of a Lycium chinense Ethanol Extract through Anti-oxidative Stress on Acute gastric lesion mice (급성 위염 유발 마우스 동물 모델에서 구기자(枸杞子) 에탄올 추출물의 위점막 손상 보호 효과)

  • Lee, AhReum;Lee, JooYoung;Kim, MinYeong;Shin, Mi-Rae;Shin, SungHo;Seo, BuIl;Kwon, OJun;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.63-68
    • /
    • 2015
  • Objectives : Gastric lesions affect many people around the world and their development are results of the imbalance between destructive and protective factors in the gastric mucosa. Lycium chinense has been widely used as a traditional Korean medicine, it was recently reported that they have potent anti-inflammatory effects in chronic hepatitis models. Therefore, this study aimed to investigate the anti-inflammatory activity of Lycium chinense extract (LCE) on HCl-Ethanol induced gastric lesion mice.Methods : The ICR mice were divided randomly into five groups of six animals each. Group A was normal mice, and group B was treated orally with 0.5 ml 150 mM HCl-60% Ethanol. Mice in group C and D were pre-treatment of LCE (100 mg/kg and 200 mg/kg bodyweight, p.o before HCl/ethanol treatment) and group E was orally administered sucralfate (10 mg/kg).Results : 150mM HCl/60% ethanol-induced gastric mucosal injury mice were ameliorated mucosal damage upon histological evaluation by treatment of LCE. Pre-treatment of LCE attenuated reactive oxidative species (ROS) and produces peroxynitrite (ONOO-) in stomach tissues. As results of stomach protein analyses, LCE effectively reduce inflammatory-related factors such as cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) in gastric lesion mice. In addition, nuclear factor kappa B (NF-κB) and inhibitor of phosphorylation of nuclear factor kappa B (p-IκB) were down-regulated in LCE-administrated gastric lesion mice.Conclusions : Our discovery supports that the therapeutic activity of LCE ameliorate the development of gastric lesion via suppressing the oxidative stress and gastric partial inflammation induced by 150 mM HCl/60% ethanol.

Immunomodulatory activities of polysaccharides extracted from Cudrania tricuspidata fruits in macrophage (꾸지뽕(Cudrania tricuspidata) 열매에서 분리된 조다당의 큰포식세포 면역 활성 조절)

  • Cho, Eun-Ji;Kim, Yi-Eun;Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.511-516
    • /
    • 2018
  • Macrophages play a crucial role in the host immune defense system. The current study investigated immunomodulatory activities induced by polysaccharides extracted from Cudrania tricuspidata (CTPS) fruits in murine macrophages and their role in signaling pathways. In macrophages, CTPS predominantly induced nitric oxide (NO), tumor necrosis factor-a, and interleukin-6 production. In addition, CTPS significantly up-regulated expression of the macrophage surface marker (CD80/86 and MHC class I/II). These results indicate that polysaccharides extracted from CTPS may potentially play an immunomodulatory role in macrophages via mitogen-activated protein kinases and nuclear factor-B signaling. These findings may be useful in the development of immune enhancing adjuvant materials obtained from natural sources.

The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng

  • Kim, Eunji;Kim, Donghyun;Yoo, Sulgi;Hong, Yo Han;Han, Sang Yun;Jeong, Seonggu;Jeong, Deok;Kim, Jong-Hoon;Cho, Jae Youl;Park, Junseong
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.218-224
    • /
    • 2018
  • Background: Compound K (CK) is a ginsenoside, a metabolite of Panax ginseng. There is interest both in increasing skin health and antiaging using natural skin care products. In this study, we explored the possibility of using CK as a cosmetic ingredient. Methods: To assess the antiaging effect of CK, RT-PCR was performed, and expression levels of matrix metalloproteinase-1, cyclooxygenase-2, and type I collagen were measured under UVB irradiation conditions. The skin hydrating effect of CK was tested by RT-PCR, and its regulation was explored through immunoblotting. Melanin content, melanin secretion, and tyrosinase activity assays were performed. Results: CK treatment reduced the production of matrix metalloproteinase-1 and cyclooxygenase-2 in UVB irradiated NIH3T3 cells and recovered type I collagen expression level. Expression of skin hydrating factors-filaggrin, transglutaminase, and hyaluronic acid synthases-1 and -2-were augmented by CK and were modulated through the inhibitor of ${\kappa}B{\alpha}$, c-Jun N-terminal kinase, or extracellular signal-regulated kinases pathway. In the melanogenic response, CK did not regulate tyrosinase activity and melanin secretion, but increased melanin content in B16F10 cells was observed. Conclusion: Our data showed that CK has antiaging and hydrating effects. We suggest that CK could be used in cosmetic products to protect the skin from UVB rays and increase skin moisture level.

Anti-inflammatory Effect of Yongseollan on the LPS-activated RAW 264.7 Cells

  • Jo, Mi-Jeong;Lee, Byung-Wook;Eom, Dong-Myung;Lee, Jong-Rok;Hwangbo, Min;Jee, Seon-Young;Kim, Sang-Chan
    • Herbal Formula Science
    • /
    • v.15 no.1
    • /
    • pp.175-183
    • /
    • 2007
  • This study was conducted to evaluate the inhibitory effects of Yongseollan(YSL) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-activated RAW264.7 cells. YSL is tropical plant originating from Mexico. The biological activity of this plant is not yet evaluated systematically. The aim of the present work is to investigate a potential anti-inflammatory activity of YSL. The RAW264.7 cells were cultured in D MEM/F12 medium for 24 hrs. After serum starvation, cells were treated with YSL for 1 hr, followed by stimulating NO production with a LPS. We found that YSL has an inhibitory effect on the production of NO, iNOS expression and $phospho-I{\kappa}B$ expression. YSL also inhibited tumor necrosis factor $(TNF)-{\alpha}$, interleukin (IL)-6, and $IL-1{\beta}$. Moreover, YSL inhibited cyclooxygenase (COX)-2 expression and prostanglandin E2 (PGE2). These findings showed that YSL could have some anti-inflammatory effects which might play a role in therapy in Gram-negative bacterial infections.

  • PDF

Anti-inflammatory Activity of Extracts from Ultra-Fine Ground Saururus chinensis Leaves in Lipopolysaccharide-Stimulated Raw 264.7 Cells

  • Kim, Dong-Hee;Cho, Jun-Hyo;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.37-43
    • /
    • 2016
  • Bioactive components of ultra-fine ground Saururus, the extraction yield increases when the leaves are ultra-fine ground. Comparison of normal-ground and ultra-fine ground Saururus chinensis leaves showed that the solid content and antiinflammatory activity of ultra-fine ground extracts was higher than that of normal-ground extracts. Lipopolysaccharide (LPS)-stimulated Raw 264.7 cells were treated with different concentrations of Saururus chinensis extract and the amount of nitric oxide (NO) was determined; LPS-treated cells produced 2 times more NO than cells that were not treated with LPS. Moreover, the NO production in cells treated with Saururus chinensis extract was inhibited in a concentration-dependent manner. Because the stimulant-induced NO production is regulated by the inducible nitric oxide synthase (iNOS), we measured the iNOS protein level to elucidate the mechanism by which the NO production was inhibited. We found that the amount of iNOS decreased dose-dependently. It was reduced by 53% at a Saururus chinensis extract concentration of $100{\mu}g/mL$. The protein expression of cyclooxygenase-2 (COX-2) in LPS-treated Raw 264.7 cells was inhibited by 31% at $100{\mu}g/mL$ of Saururus chinensis extract. Gel shift of the nuclear factor kappa B-DNA complex occurred in LPS-treated cells and the intensity of the band decreased gradually in a concentration-dependent manner. Ultra-fine ground Saururus chinensis extract had a concentration-dependent inhibitory effect on the production of prostaglandin $E_2$, tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$ (IL-$1{\beta}$), IL-6, and IL-8 in LPS-treated Raw 264.7 cells, i.e., at $50{\mu}g/mL$ of Saururus chinensis extract, their levels were decreased by 53, 67, 52, 37, and 21% respectively.