• Title/Summary/Keyword: Hysteresis control

Search Result 485, Processing Time 0.024 seconds

Effects of prestretch on stress relaxation and permanent deformation of orthodontic synthetic elastomeric chains

  • Chang, Jee Hae;Hwang, Chung-Ju;Kim, Kyung-Ho;Cha, Jung-Yul;Kim, Kwang-Mahn;Yu, Hyung Seog
    • The korean journal of orthodontics
    • /
    • v.48 no.6
    • /
    • pp.384-394
    • /
    • 2018
  • Objective: This study was performed to investigate an appropriate degree of prestretch for orthodontic synthetic elastomeric chains focusing on time-dependent viscoelastic properties. Methods: Orthodontic synthetic elastomeric chains of two brands were prestretched to 50, 100, 150, and 200% of the original length in one and three cycles, and the hysteresis areas of the obtained stress-strain curves were determined. Acrylic plates were employed to maintain constant strain during the experiment. A total of 180 samples were classified into nine groups according to brand, and their stresses and permanent deformations were measured immediately after prestretch (0 hour), after 1 hour and 24 hours, and after 1, 2, 3, 4, 5, 6, 7, and 8 weeks. The relationship between stress relaxation and permanent deformation was investigated for various degrees of prestretch, and the estimated stress resulting from tooth movement was calculated. Results: The degree of prestretch and the stress relaxation ratio exhibited a strong negative correlation, whereas no correlation was found between the degree of prestretch and the average normalized permanent strain. The maximal estimated stress was observed when prestretch was performed in three cycles to 200% of the original length. Conclusions: Although prestretch benefited residual stress, it did not exhibit negative effects such as permanent deformation. The maximal estimated stress was observed at the maximal prestretch, but the difference between prestretch and control groups decreased with time. In general, higher residual stresses were observed for product B than for product A, but this difference was not clinically significant.

Characteristics of Rustling Sound of Laminated Fabric Utilizing Nano-web (나노웹을 이용한 라미네이트소재의 마찰음 특성)

  • Jeong, Tae-Young;Lee, Eu-Gene;Lee, Seung-Sin;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.620-629
    • /
    • 2013
  • This study examines the rustling sound characteristics of electrospun nanofiber web laminates according to layer structures. This study assesses mechanical properties and frictional sounds (such as SPL); in addition, Zwicker's psychoacoustic parameters (such as Loudness (Z), Sharpness (Z), Roughness (Z), and Fluctuation strength (Z)) were calculated using the Sound Quality Program (ver.3.2, B&K, Denmark). The result determined how to control these characteristics and minimize rustling sounds. A total of 3 specimens' frictional sound (generated at 0.63 m/s) was recorded using a Simulator for Frictional Sound of Fabrics (Korea Patent No. 10-2008-0105524) and SPLs were analyzed with a Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured with a KES-FB system. The SPL value of the sound spectrum showed 6.84~58.47dB at 0~17,500Hz. The SPL value was 61.2dB for the 2-layer PU nanofiber web laminates layered on densely woven PET(C1) and was the highest at 65.1dB for the 3-layer PU nanofiber web laminates (C3). Based on SPSS 18.0, it was shown that there is a correlation between mechanical properties and psychoacoustic characteristics. Tensile properties (LT), weight (T), and bending properties (2HB) showed a high correlation with psychoacoustic characteristics. Tensile linearity (LT) with Loudness (Z) showed a negative correlation coefficient; however, weight (T) with Sharpness (Z) and Roughness (Z), and bending hysteresis (2HB) with Roughness (Z) indicated positive correlation coefficients, respectively.

Studies on the Development of Corrugated Board and Investigation of Optimum Corrugating Adhesive for Archival Quality Container (Part 1) (기록물 보존상자용 골판지 개발 및 접착제 탐색에 관한 연구 (제1보))

  • Park, Ji-Hyun;Kim, Hyoung-Jin;Lee, Tai-Ju;Seo, Young-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.73-81
    • /
    • 2009
  • The document archives like official documents, books, maps and historic paper artifacts are primarily based on the organic cellulosic materials. As the passage of time, these organic cellulosic materials are slowly deteriorated by various aging factors, like light, polluted air and biological fungi. Many researchers have been carried out the examination method of deteriorating origins, the mechanism of aging hysteresis, and the preserving method of archival materials. One of the most simple and easiest ways for conservation of organic archival documents is the proper storage under environmental control. Corrugated board for archival quality container has been developed and already used in advanced country, like Japan, USA, German, UK and Europe. In case of Korea, corrugated board for archival quality container has been used a decade ago, but totally imported. This study was tried to develop the corrugated board for archival quality container. Liner and corrugated medium were specially produced and finally manufactured to E flute corrugated board. The physical and strength properties of permanent base paper and corrugated board were evaluated, and compared with imported corrugated board. 4 kinds of corrugating adhesives were considered various in order to investigate optimum adhesive for flute development between liner and corrugating medium, and evaluate adhesion strength under conditions of storage and curing temperatures.

Effect of Rubber Damper of Flywheel on the Vibration of Diesel Engine (플라이휠의 고무댐퍼가 기관(機關)의 진동(振動)에 미치는 영향(影響))

  • Myung, B.S.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-251
    • /
    • 1993
  • Data acquisition system and computer program developed in this study could be well used in engine vibration analysis. The system and program developed were also operated to be able to control measuring interval, number of channels, number of data. The flywheel was specially studied to provide the proper weight with rubber damper for the engine design at low level of vibration. This study was conducted to obtain basic data which affect the engine vibration. The experiment of this study was performed on original weight flywheel, weight-reduced flywheel, weight-reduced and rubber-coated flywheel, weight-reduced and damper-attached flywheel. Avarage of peak value, maximum vibration, power spectrum density based on FFT analysis are major factors of this experiment. Results were obtained as follows : 1. When rubber was inserted in the flywheel rim of which weight was reduced from 32.2kgf to 24.4 kgf, maximum vibration of the engine was decreased 48.3% at X axis, 35.5% at Y axis and 34.6% at Z axis in comparison with the flywheel of original weight. 2. When the flywheel of rubber damper was compared with the original flywheel, the average of absolute vibration for rubber damped flywheel was decreased at X, Y, Z axis and especially its decreasing rate was so high at X-axis comparing with the other flywheel, which implied that rubber damper was very useful to reducing the vibration of the engine at X axis. 3. Hysteresis losses of X, Y, Z axis were greatly decreased in the flywheel with rubber damper on rim. 4. Damped oscillation effect on X and Y axis vibration above average peak vibration by the flywheel of rubber damper on rim was larger than those by the other flywheels. 5. Power spectrums of vibration at real and imaginery part were bi-mode type. The vibration frequency of rubber dampered flywheel which weight is decreased was slightly increased as compared with original flywheel.

  • PDF

Improvement and Evaluation of Seismic Performance of Reinforced High-Strength Concrete Beam-Column Joints with Advanced Reinforcing Detailings and High Ductile Fiber-Reinforced Mortar (고성능 배근상세 및 HDFRM을 활용한 고강도 철근콘크리트 보-기둥 접합부 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Sin, Jong-Hak;Yi, Dong-Ryul;Hong, Kun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.5-8
    • /
    • 2008
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced high-strength concrete beam-column joints designed by high performance techniques, such as application of high-strength concrete, reducing of joint regions damage, moving of beam plastic hinge, advanced reinforcing detailings and High Ductile Fiber-Reinforced Mortar.(HDFRM) Specimens(HJCI), designed by the development of earthquake-resistant performance, moving of beam plastic hinge, and new design approach, were attained the moving of beam plastic hinge and developed significantly earthquake-resistant performance of such joints. Specimens(HJRP), designed with HDFRM, were indicated more stable hysteresis behavior, high load carrying capacity, and distributed crack pattern of specimens HJRP when compared to the control specimen.

  • PDF

Development of High-Density Information Storage Media by Employing the Six Sigma Methodology (식스 시그마 기법을 활용한 고밀도 정보저장 매체 개발)

  • Lee, Myung-Bok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.41-46
    • /
    • 2018
  • Six sigma methodology is the management tools not only can cause productivity enhancement through the quality control and cost reduction of products and services but also can be applied to various activities of corporates such as research and development. Development of high-density information storage media and devices is indispensible to accomplish the information convergence era. In this paper, we report the case of applying six sigma methodology and tools to the development project of high-density information storage media. The standard DMAIC process was applied to the project and pursuing goals and tools and results in each stage were explained in detail. By adopting the methodology, we could establish fabrication methods of information storage media of recording density higher than $250Gb/in^2$ with high uniformity and reproducibility. The magnetic property and performance of fabricated media were confirmed through measurement of the magnetic hysteresis curve.

DEVELOPMENT OF A REVERSE CONTINUOUS VARIABLE DAMPER FOR SEMI-ACTIVE SUSPENSION

  • Yoon, Young-Hwan;Choi, Myung-Jin;Kim, Kyung-Hoon
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions fur passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed. It is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-offbecomes smooth when the fixed orifice size increases. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20N, linearity, and variance of damping farce. The damping farce variance is wide and continuous, and is controlled by the spoof opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

A Study on the Behavior of Metal Touch Connection subject to Connection Types (이음방식 및 틈의 위치에 따른 메탈터치 이음부의 거동에 관한 연구)

  • Hong, Kap Pyo;Kim, Seok Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.661-669
    • /
    • 2004
  • In the steel structure of high-rise buildings, a connection analysisand a column design have been made after welding and bolting suitable gaps. Each country, however, has different codes, and such differences are very big. American steel has been designed according to a code that all axial loads can be carried from the upper parts to the lower parts as determined by the designer, but Korean and Japanese steel have been designed by 1/4 of the standard of all axial loads. In this paper, a metal touch experiment was done as an intermediation parameter with a connecting location and a connecting method for economic and constructive efficiency. Every specimen is tested by a low-to-high displacement control to grasp ultimate strength, displacement, the connection's lateral deflection, and stress. The results of the test were compared and analyzed.

뉴로모픽 시스템용 시냅스 트랜지스터의 최근 연구 동향

  • Nam, Jae-Hyeon;Jang, Hye-Yeon;Kim, Tae-Hyeon;Jo, Byeong-Jin
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.4-18
    • /
    • 2018
  • Lastly, neuromorphic computing chip has been extensively studied as the technology that directly mimics efficient calculation algorithm of human brain, enabling a next-generation intelligent hardware system with high speed and low power consumption. Three-terminal based synaptic transistor has relatively low integration density compared to the two-terminal type memristor, while its power consumption can be realized as being so low and its spike plasticity from synapse can be reliably implemented. Also, the strong electrical interaction between two or more synaptic spikes offers the advantage of more precise control of synaptic weights. In this review paper, the results of synaptic transistor mimicking synaptic behavior of the brain are classified according to the channel material, in order of silicon, organic semiconductor, oxide semiconductor, 1D CNT(carbon nanotube) and 2D van der Waals atomic layer present. At the same time, key technologies related to dielectrics and electrolytes introduced to express hysteresis and plasticity are discussed. In addition, we compared the essential electrical characteristics (EPSC, IPSC, PPF, STM, LTM, and STDP) required to implement synaptic transistors in common and the power consumption required for unit synapse operation. Generally, synaptic devices should be integrated with other peripheral circuits such as neurons. Demonstration of this neuromorphic system level needs the linearity of synapse resistance change, the symmetry between potentiation and depression, and multi-level resistance states. Finally, in order to be used as a practical neuromorphic applications, the long-term stability and reliability of the synapse device have to be essentially secured through the retention and the endurance cycling test related to the long-term memory characteristics.

Effect of soil in controlling the seismic response of three-dimensional PBPD high-rise concrete structures

  • Mortezaie, Hamid;Rezaie, Freydoon
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.217-227
    • /
    • 2018
  • In the last decades, valuable results have been reported regarding conventional passive, active, semi-active, and hybrid structural control systems on two-dimensional and a few three-dimensional shear buildings. In this research, using a three-dimensional finite element model of high-rise concrete structures, designed by performance based plastic design method, it was attempted to construct a relatively close to reality model of concrete structures equipped with Tuned Mass Damper (TMD) by considering the effect of soil-structure interaction (SSI), torsion effect, hysteresis behavior and cracking effect of concrete. In contrast to previous studies which have focused mainly on linearly designed structures, in this study, using performance-based plastic design (PBPD) design approach, nonlinear behavior of the structures was considered from the beginning of the design stage. Inelastic time history analysis on a detailed model of twenty-story concrete structure was performed under a far-field ground motion record set. The seismic responses of the structure by considering SSI effect are studied by eight main objective functions that are related to the performance of the structure, containing: lateral displacement, acceleration, inter-story drift, plastic energy dissipation, shear force, number of plastic hinges, local plastic energy and rotation of plastic hinges. The tuning problem of TMD based on tuned mass spectra is set by considering five of the eight previously described functions. Results reveal that the structural damage distribution range is retracted and inter-story drift distribution in height of the structure is more uniform. It is strongly suggested to consider the effect of SSI in structural design and analysis.