• Title/Summary/Keyword: Hysteresis Energy

Search Result 361, Processing Time 0.03 seconds

The Application of Piezoelectric Materials in Smart Structures in China

  • Qiu, Jinhao;Ji, Hongli
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.266-284
    • /
    • 2010
  • Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, the research activities and achievements on the applications of piezoelectric materials in smart structures in China, including vibration control, noise control, energy harvesting, structural health monitoring, and hysteresis control, are introduced. Special attention is given to the introduction of semi-active vibration suppression based on a synchronized switching technique and piezoelectric fibers with metal cores for health monitoring. Such mechanisms are relatively new and possess great potential for future applications in aerospace engineering.

Development of 3 Phase PWM Converter using Analog Hysteresis Current Controller (아날로그 히스테리시스 전류 제어기를 적용한 3상 PWM 컨버터 개발)

  • Lee Young-kook;Noh Chul-won
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.372-376
    • /
    • 2001
  • Due to several advantages of Pulse Width Modulation(PWM) Converter, such as unity power factor operation, elimination of low-order harmonics and regeneration of motor braking energy to source, the application range of PWM Converter has been rapidly extended in industrial application. Nowadays, vector control algorithm and space vector PWM(SVPWM) method are applied to improve the performances of PWM Converter, but vector control algorithm and SVPWM require to use Microprocessor and other digital devices in hardware, causing costly and somewhat large dimension system. In every practical application of energy conversion equipments, the design and implementation should be carried out considering cost and performance. High performance and low cost is the best choice for energy conversion equipments. So, this paper presents the practical design method and implementation results of 3-phase PWM Converter with analog hysteresis current controller, and verifies the performances of unit power factor operation and energy regeneration operation via experimental results.

  • PDF

Experimental and analytical study of steel slit shear wall

  • Khatamirad, Milad;Shariatmadar, Hashem
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.741-751
    • /
    • 2017
  • A steel slit shear wall has vertical slits and when it is under lateral loads, the section between these slits has double-curvature deformation, and by forming a flexural plastic hinge at the end of the slit, it dissipates the energy on the structure. In this article, Experimental, numerical and analytical analyses are performed to study the effect of slit shape and edge stiffener on the behavior of steel slit shear wall. Seismic behavior of three models with different slit shapes and two models with different edge stiffener shapes are studied and compared. Hysteresis curves, energy dissipation, out of plane buckling, initial stiffness and strength are discussed and studied. The proposed slit shape reduces the initial stiffness, increases the strength and energy dissipation. Also, edge stiffener shape increases the initial stiffness significantly.

Transient Shock Waves in Supersonic Internal Flow

  • Suryan, Abhilash;Shin, Choon-Sik;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.357-361
    • /
    • 2010
  • When high-pressure gas is exhausted through nozzle exit to the atmosphere, expanded supersonic jet is formed with the Mach disk at a specific condition. In two-dimensional supersonic jets, the hysteresis phenomenon of the reflected shock waves is found to occur under quasi-steady flow conditions. Transitional pressure ratio between the regular reflection and Mach reflection in the jet is affected by this phenomenon. In the present study, experiments are carried out on internal flow in a supersonic nozzle to clarify the hysteresis phenomena for the shock waves and to discuss its interdependence on the rate of the change of pressure ratio with time. Flow visualization is carried out separately on the straight and divergent channels downstream of the nozzle throat section. The influence that the hysteresis phenomena have on the location of shock wave in a supersonic nozzle is also investigated experimentally.

  • PDF

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

Hysteresis modelling of reinforced concrete columns under pure cyclic torsional loading

  • Mondal, Tarutal Ghosh;Kothamuthyala, Sriharsha R.;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • It has been observed in the past that, the reinforced concrete (RC) bridge columns are very often subjected to torsional moment in addition to flexure and shear during seismic vibration. Ignoring torsion in the design can trigger unexpected shear failure of the columns (Farhey et al. 1993). Performance based seismic design is a popular design philosophy which calls for accurate prediction of the hysteresis behavior of structural elements to ensure safe and economical design under earthquake loading. However, very few investigations in the past focused on the development of analytical models to accurately predict the response of RC members under cyclic torsion. Previously developed hysteresis models are not readily applicable for torsional loading owing to significant pinching and stiffness degradation associated with torsion (Wang et al. 2014). The present study proposes an improved polygonal hysteresis model which can accurately predict the hysteretic behavior of RC circular and square columns under torsion. The primary curve is obtained from mechanics based softened truss model for torsion. The proposed model is validated with test data of two circular and two square columns. A good correlation is observed between the predicted and measured torque-twist behavior and dissipated energy.

Novel Estimation Technique for the State-of-Charge of the Lead-Acid Battery by using EKF Considering Diffusion and Hysteresis Phenomenon (확산 및 히스테리시스 현상을 고려한 확장칼만필터를 이용한 새로운 납축전지의 충전상태 추정방법)

  • Duong, Van-Huan;Tran, Ngoc-Tham;Park, Yong-Jin;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.139-148
    • /
    • 2014
  • State-of-charge (SOC) is one of the significant indicators to estimate the driving range of the electric vehicle and to control the alternator of the conventional engine vehicles as well. Therefore its precise estimation is crucial not only for utilizing the energy effectively but also preventing critical situations happening to the power train and lengthening the lifetime of the battery. However, lead-acid battery is time-variant, highly nonlinear, and the hysteresis phenomenon causes large errors in estimation SOC of the battery especially under the frequent discharge/charge. This paper proposes a novel estimation technique for the SOC of the Lead-Acid battery by using a well-known Extended Kalman Filter (EKF) and an electrical equivalent circuit model of the Lead-Acid battery considering diffusion and hysteresis characteristics. The diffusion is considered by the reconstruction of the open circuit voltage decay depending on the rest time and the hysteresis effect is modeled by calculating the normalized integration of the charge throughput during the partial cycle. The validity of the proposed algorithm is verified through the experiments.

An Experimental Study on Static Characteristics of Servo Valves using Transmission Line Pressures (배관 압력을 이용한 서보밸브 정적 특성에 관한 실험적 연구)

  • Kim, Sung Dong;Joo, Byeol Jin;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.42-50
    • /
    • 2016
  • The conventional technique to measure the hysteresis and the null of servo valves is defined in ISO 10770-1 and based on load flow signal of the servo valve. A new technique based on the transmission line pressures is suggested in this study. The new measuring method was verified through a series of experiments. No hysteresis was observed between the spool displacement and the transmission line pressures, load pressure or each chamber pressure. Some hysteresis was observed between valve input and pressures, which was found to be the same as those of load flow and spool displacement for the valve input. By using the chamber pressures, the hysteresis and the null are easier to measure than the load pressure or differential pressure between those two chamber pressures because the chamber pressures showed sharp edges.

Testing and modelling of shape memory alloy plates for energy dissipators

  • Heresi, Pablo;Herrera, Ricardo A.;Moroni, Maria O.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.883-900
    • /
    • 2014
  • Shape memory alloys (SMA) can dissipate energy through hysteresis cycles without significant residual deformation. This paper describes the fabrication and testing of copper-based SMA hourglass-shaped plates for use in energy dissipation devices and the development of a numerical model to reproduce the experiments. The plates were tested under cyclic flexural deformations, showing stable hysteresis cycles without strength degradation. A detailed nonlinear numerical model was developed and validated with the experimental data, using as input the constitutive relationship for the material determined from cyclic tests of material coupons under tension loading. The model adequately reproduces the experimental results. The study is focused on the exploitation of SMA in the martensite phase.

Generalized Vector Control with Reactive Power Control for Brushless Doubly-Fed Induction Machines

  • Duan, Qiwei;Liu, Shi;Schlaberg, H. Inaki;Long, Teng
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.817-825
    • /
    • 2018
  • In this paper, a current hysteresis control with good decoupling properties for doubly-fed brushless induction machines (BDFIMs) has been proposed based on a generalized vector model. The independent control of the reactive power and speed for BDFIMs has been achieved by controlling the d-axis and the q-axis current of the control windings (CW). The proposed vector control method has been developed for the power winding (PW) flux frame. Experimental verification of a type Y180M-4 BDFIM prototype with 1/4 pole-pairs has been presented. Evidence of its good performance has been shown through experimental results.