• Title/Summary/Keyword: Hysteresis Damper

Search Result 86, Processing Time 0.019 seconds

Experiment of ENTA Hysteretic Damper and Verification of Seismic Performance Through Finite Element Analysis (ENTA이력댐퍼의 실험과 유한 요소 해석을 통한 내진 성능 검증)

  • Lee, Hong-Seok;Hwang, Jung-Hyun;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.79-86
    • /
    • 2020
  • The performance enhancement of various damping systems from natural hazards has become an highly important issue in engineering field. In this paper, ENTA hysteretic dampers were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. The test results showed that the hysteretic dampers are effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings. Also, the hysteretic dampers were modeled in FEM(Finite Element Method) structural analysis program. As comparing the computer modeling and the experiment, this study model reflects the nonlinear behavior of steel and derives the hysteresis loop.

Displacement and Velocity Dependence of Clamped Shape Metallic Dampers (꺽쇠형 강재 댐퍼의 변위 및 속도 의존성)

  • Lee, Hyun Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.62-70
    • /
    • 2013
  • The purpose of this study is the displacement and velocity dependence evaluation of clamped shape metallic damper, which were evaluated superior in energy dissipation capacity than straight type slit damper. For this purpose, 6 metallic damper specimens are prepared and dependence test are performed. Test variables are displacement dependence and velocity dependence. According to displacement dependence test results, larger target displacement (50mm) shows lower cyclic numbers and cumulated energy dissipated area than lower target displacement (25mm). Also it shows higher strength and early failure than short target displacement. In velocity dependence evaluation, fast target velocity (60mm/sec) shows lower cyclic numbers and cumulated energy dissipated area than slow target velocity (40mm/sec). Therefore the hysteresis dependence of metallic damper were evaluated as close relation to the loading displacement and velocity conditions.

Development of a Flexure Yielding Steel Damper for Concentrically Braced Frames (중심가새골조의 내진성능향상을 위한 휨항복댐퍼의 개발)

  • Seong-Hoon, Jeong;Ali, Ghamari
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.381-386
    • /
    • 2022
  • This paper details the analytical and experimental studies performed to propose a steel damper based on the flexural yielding mechanism. The damper is composed of a set of damping plates that are designed to yield in flexure. The comparison of experimental and finite element analysis results indicate that the analytical approach adopted in this study should be appropriate to perform sensitivity studies on the geometries of the damping plates. Although the damper is originally proposed to work based on the flexural mechanism, it is observed that the contribution of the tensile behavior of the damping plate could be considerable. As the thickness of the damping plate increases, the plastic energy due to the flexural yield increases. As the thickness of the damping plate decreases, the contribution of the tensile behavior increases, and the shape of the hysteresis loop distorts.

Dynamic Modeling of Semi-active Squeeze Mode MR Damper for Structural Vibration Control (구조물의 진동 제어를 위한 압착식 MR 감쇠기의 동적 모델링)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.172-180
    • /
    • 2009
  • Normally in order to build a semi-active control system equipped with MR damper, the dynamic modeling of the damper is required to numerically predict its dynamic damping force and also its behavioral characteristics. For the dynamic modeling of the MR damper, this paper attempts to predict and evaluate its dynamic behavior by applying specifically both a power model and a Bingham model. Dynamic loading tests were performed on the squeeze type of damper specially designed for this research, and force-displacement hysteresis loops confirmed the effectiveness of the damper as a semi-active control device. In the meantime, in order to evaluate the effectiveness of each model applied, the model parameter for each model was identified. On the basis of the parameter, we derived the error ratio of the force-velocity relationship curve and the dynamic damping force, which was contrasted and compared with the experimental results of the squeeze type of damper. Finally, the squeeze type of MR damper developed in this research was proved to be valid as a semi-active control device, and also the evaluation of the two dynamic models showed they were working fine so that they were likely to be easily utilized to numerically predict the dynamic characteristics of any dampers with MR fluid as well as the squeeze type of MR damper.

Experimental Study for Dynamic Characteristics of Eddy Current Shock Absorber (와전류 충격완충장치의 실험적 동특성 연구)

  • Kwag, Dong-Gi;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1089-1094
    • /
    • 2007
  • This paper is concerned with a new concept for the damper without neither a coil spring nor fluid. The new damper concept consists of the permanent magnets and the cylinder of the conducting material. The opposite pole magnets produces the repulsive forces and this is substituted for the coil spring. The relative motion between the magnets and conducting cylinder produces eddy currents thus resulting in the electromagnetic force, which turns out to be the damping force and is substituted for a damping fluid. This damper is called the eddy current damper(ECD). The important advantage of the proposed ECD is that it does not require any damping fluid and any external power and is non-contacting and relatively insensitive to temperature. In the present study, the proposed ECD was constructed and the experiments were performed to investigate its dynamic characteristics. The experiments shows that the proposed ECD has the excellent damping ability.

Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements (조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성)

  • Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.72-84
    • /
    • 2016
  • The conventional brace system is generally accepted as the lateral load resisting system for steel structures due to efficient story drift control and economic feasibility. But lateral stiffness of the structure decreases when buckling happens to the brace in compression, so that it results in unstable structure with unstable hysteresis behavior through strength deterioration. Buckling restrained brace(BRB) system, in which steel core is confined by mortar/concrete-filled tube, represents stable behavior in the post-yield range because the core's buckling is restrained. So, seismic performance of BRB is much better than that of conventional brace system in point of energy absorption capacity, and it is applied the most in high seismicity regions as damper element. BRBs with various shaped-sections have been developed across the globe, but the shapes experimented in Korea are now quite limited. In this study, we considered built-up type of restraining member made up of precast reinforcement concrete and the steel core. we experimented the BRB according to AISC(2005) and evaluated seismic performances and hysteresis characteristics.

A Study on Clutch Torsional Characteristics for the Torsional Vibration Reduction at Driving (주행시 비틀림진동 저감을 위한 클러치 비틀림특성 연구)

  • 정태진;홍동표;태신호;윤영진;김상수
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.75-83
    • /
    • 1995
  • The fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem, due to an increase in the fluctuation of the torque of recent light weighted and high powered engines, along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by smoothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. This paper presents an experimental and theoretical research on the clutch-disc torsional characteristics for the reduction of the torsional vibration at driving. The effects of clutch-damper on diminishing the torsional vibration were investigated experimentally. A dynamic model for the automotive driveline was developed, and the engine torque of the model were evaluated with experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics and the clutch-disc torsional characteristics for reducing the torsional vibration has been suggested. The results are as follows: (1) By exceuting simulations using nonlinear model of four degrees of freedom, a design technique to determine the clutch-disc torsional characteristics for reducing the torsional vibration at driving was developed. (2) The influence of barious torsional characteristics of the clutch has been studied in examining design parameters, which indicates that the domain to minimize the torsional vibration at driving depends on the characteristics of the clutch-damper, i. e., spring constant and hysteresis.

  • PDF

Multiple failure criteria-based fragility curves for structures equipped with SATMDs

  • Bakhshinezhad, Sina;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.463-475
    • /
    • 2019
  • In this paper, a procedure to develop fragility curves of structures equipped with semi-active tuned mass dampers (SATMDs) considering multiple failure criteria has been presented while accounting for the uncertainties of the input excitation, structure and control device parameters. In this procedure, Latin hypercube sampling (LHS) method has been employed to generate 30 random SATMD-structure systems and nonlinear incremental dynamic analysis (IDA) has been conducted under 20 earthquakes to determine the structural responses, where failure probabilities in each intensity level have been evaluated using Monte Carlo simulation (MCS) method. For numerical analysis, an eight-story nonlinear shear building frame with bilinear hysteresis material behavior has been used. Fragility curves for the structure equipped with optimal SATMDs have been developed considering single and multiple failure criteria for different performance levels and compared with that of uncontrolled structure as well as structure controlled using passive tuned mass damper (TMD). Numerical analysis has shown the capability of SATMDs in significant enhancement of the seismic fragility of the nonlinear structure. Also, considering multiple failure criteria has led to increasing the fragility of the structure. Moreover, it is observed that the influence of the uncertainty of input excitation with respect to the other uncertainties is considerable.

Performance Comparison Analysis of Frequency Sensing Shock Absorber and Passive Shock Absorber (주파수 감응식 쇽업소버와 수동형 쇽업소버의 성능비교 분석)

  • Noh, Daekyung;Seo, Wonjin;Yun, Jooseop;Jang, Joosup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.380-387
    • /
    • 2015
  • Various forms of passive shock absorber have developed to supplement performance which is poorer than that of active shock absorber. It is called 'Hybrid Conventional Damper (HCD)'. Frequency sensing shock absorber that this study will cover belongs to the HCD. This study aims to demonstrate that performance of frequency sensing shock absorber is superior than that of passive shock absorber. Study process is as follows. Firstly, analysis models for both passive shock absorber and frequency sensing shock absorber are developed to secure reliability. Then, elements which cause difference of ride quality are found out through comparison of hysteresis characteristics. By comparison of frequency characteristic, furthermore, damping principle of frequency sensing shock absorber is understood. Also, it determines if the absorber performs well even though maximum excitation speed is changed. Finally, the study proves that performance of frequency sensing shock absorber is superior than that of passive shock absorber after comparing change of damping power in excitation condition that various frequencies are mixed.

Performance Evaluation of Semi-Active Tuned Mass Damper for Elastic and Inelastic Seismic Response Control (준능동 동조질량감쇠기의 탄성 및 비탄성 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Chung, Lan;Woo, Sung-Sik;Cho, Seung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.47-56
    • /
    • 2007
  • In this study, tile performance of a passive tuned mass damper (TMD) and a semi-active tuned mass damper (STMD) was evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for the damped structures with a passive TMD, which was optimally designed using the frequency and damping ratio presented by previous study, and with a STMD proposed in this study. The displacement spectra confirm that STMD provides much better control performance than passive md with less stroke. Also, the robustness or the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of which hysteresis was described by Bouc-Wen model and the results indicated that the performance of the passive TMD of which design parameters were optimized for a elastic structure considerably deteriorated when the hysteretic portion or the structural responses increased, while the STMD showed about 15-40% more response reduction than the TMD.