• Title/Summary/Keyword: Hypoxic

Search Result 487, Processing Time 0.024 seconds

The Combined Effects of Ginkgo Biloba Extracts and Aspirin on Viability of SK-N-MC, Neuroblastoma Cell Line in Hypoxia and Reperfusion Condition

  • Moon, Sung-Hwan;Lee, Yong-Jik;Park, Soo-Yong;Song, Kwan-Young;Kong, Min-Ho;Kim, Jung-Hee
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Objective: The purpose of this study is to investigate the combined effects of ginkgo biloba extract, ginkgolide A and B and aspirin on SK-N-MC, human neuroblastoma cell viability and mRNA expression of growth associated protein43 (GAP43), Microtubule-associated protein 2 (MAP2), B-cell lymphoma2 (Bcl2) and protein53 (p53) gene in hypoxia and reperfusion condition. Methods: SK-N-MC cells were cultured with Dulbecco's Modified Eagle's Medium (DMEM) media in $37^{\circ}C$, 5% $CO_2$ incubator. The cells were cultured for 8 hours in non-glucose media and hypoxic condition and for 12 hours in normal media and $O_2$ concentration. Cell survival rate was measured with Cell Counting Kit-8 (CCK-8) reagent assay. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to estimate mRNA levels of GAP43, MAP2, Bcl2, and p53 genes. Results: The ginkgolide A and B increased viable cell number decreased in hypoxic and reperfused condition. The co-treatment of ginkgolide B with aspirin also increased the number of viable cells, however, there was no additive effect. Although there was no increase of mRNA expression of GAP43, MAP2, and Bcl2 in SK-N-MC cells with individual treatment of ginkgolide A, B or aspirin in hypoxic and reperfused condition, the co-treatment of ginkgolide A or B with aspirin significantly increased GAP43 and Bcl2 mRNA levels. In MAP2, only the co-treatment of ginkgolide A and aspirin showed increasing effect. The mRNA expression of p53 had no change in all treating conditions. Conclusion: This study suggests that the combined treatments of Ginkgo biloba extracts and aspirin increase the regeneration of neuroblastoma cells injured by hypoxia and reperfusion.

Endothelial Cell Products as a Key Player in Hypoxia-Induced Nerve Cell Injury after Stroke

  • Cho, Chul-Min;Ha, Se-Un;Bae, Hae-Rahn;Huh, Jae-Taeck
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • Objective : Activated endothelial cells mediate the cascade of reactions in response to hypoxia for adaptation to the stress. It has been suggested that hypoxia, by itself, without reperfusion, can activate the endothelial cells and initiate complex responses. In this study, we investigated whether hypoxia-induced endothelial products alter the endothelial permeability and have a direct cytotoxic effect on nerve cells. Methods : Hypoxic condition of primary human umbilical vein endothelial cells[HUVEC] was induced by $CoCl_2$ treatment in culture medium. Cell growth was evaluated by 3,4,5-dimethyl thiazole-3,5-diphenyl tetrazolium bromide [MTT] assay Hypoxia-induced products [$IL-1{\beta},\;TGF-{\beta}1,\;IFN-{\gamma},\;TNF-{\alpha}$, IL-10, IL-6, IL-8, MCP-l and VEGF] were assessed by enzyme-linked immunosorbent assay. Endothelial permeability was evaluated by Western blotting. Results : Prolonged hypoxia caused endothelial cells to secrete IL -6, IL -8, MCP-1 and VEGF. However, the levels of IL -1, IL -10, $TNF-{\alpha},\;TGF-{\beta},\;IFN-{\gamma}$ and nitric oxide remained unchanged over 48 h hypoxia. Hypoxic exposure to endothelial cells induced the time-dependent down regulation of the expression of cadherin and catenin protein. The conditioned medium taken from hypoxic HUVECs had the cytotoxic effect selectively on neuroblastoma cells, but not on astroglioma cells. Conclusion : These results suggest the possibility that endothelial cell derived cytokines or other secreted products with the increased endothelial permeability might directly contribute to nerve cell injury followed by hypoxia.

Hypoxia Inducible Factor-$1{\alpha}$ Directly Induces the Expression of Receptor Activator of Nuclear Factor-${\kappa}B$ Ligand in MLO-Y4 Osteocytes

  • Baek, Kyunghwa;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • Osteocytes may function as mechanotransducers by regulating local osteoclastogenesis. Reduced availability of oxygen, i.e. hypoxia, could occur during disuse, bone development, and fracture. Receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) is an osteoblast/stromal cell derived essential factor for osteoclastogenesis. The hypoxia induced osteoclastogenesis via increased RANKL expression in osteoblasts was demonstrated. Hypoxic regulation of gene expression generally involves activation of the hypoxia-inducible factor (HIF) transcription pathway. In the present study, we investigated whether hypoxia regulates RANKL expression in murine osteocytes and HIF-$1{\alpha}$ mediates hypoxia-induced RANKL expression by transactivating RANKL promoter, to elucidate the role of osteocyte in osteoclastogenesis in the context of hypoxic condition. The expression levels of RANKL mRNA and protein, as well as hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) protein, were significantly increased in hypoxic condition in MLO-Y4s. Constitutively active HIF-$1{\alpha}$ alone significantly increased the levels of RANKL expression in MLO-Y4s under normoxic conditions, whereas dominant negative HIF-$1{\alpha}$ blocked hypoxia-induced RANKL expression. To further explore to find if HIF-$1{\alpha}$ directly regulates RANKL transcription, a luciferase reporter assay was conducted. Hypoxia significantly increased RANKL promoter activity, whereas mutations of putative HIF-$1{\alpha}$ binding elements in RANKL promoter prevented this hypoxia-induced RANKL promoter activity in MLO-Y4s. These results suggest that HIF-$1{\alpha}$ mediates hypoxia-induced up-regulation of RANKL expression, and that in osteocytes of mechanically unloaded bone, hypoxia enhances osteoclastogenesis, at least in part, via an increased RANKL expression in osteocytes.

Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury

  • Wang, Kun;Kong, Xiangang
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.495-500
    • /
    • 2016
  • This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related $K^+$ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1.

Effect of Hypoxia and Reoxygenation on Cultured Human Dermal Fetal Fibroblast (저산소 및 재산소화가 배양된 태아 섬유아세포에 미치는 영향)

  • Park, Beyoung Yun;Choi, Jong Woo;Kwark, Hyug Jun;Lee, Won Jai;Rah, Dong Kyun
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.347-356
    • /
    • 2005
  • The wound healing process in fetus is quite different form that of adult. Regeneration plays an important role and scarless wound healing is possible in early gestational fetal period. Recently, the various effects of the hypoxia and reoxygenation in the wound healing process have been investigated by many researchers. The hypoxic state is known to alter protein synthesis and gene expression of TGF-${\beta}$, VEGF. The authors hypothesize there may be differences between fetal and adult fibroblast and this difference may play a possible role in the mechanism of scarless fetal wound healing. In this study, we investigated the growth of fibroblast, the amount of collagen deposition, the amount of protein synthesis and gene expression in TGF-${\beta}$(transforming growth factor-${\beta}$), VEGF(vascular endothelial growth factor) under the various hypoxic and reoxygenation conditions. Through these processes, we tried to determine the relationships between scarless fetal wound healing and hypoxic condition. In control group, fetal and adult fibroblasts were cultured under normoxic condition. The experimental groups were allocated into four different groups. The differences in TGF-beta, VEGF under 24, 48, 72 hours were statistically investigated. Compared to adult fibroblast group, there was a statistically significant increase (p<0.01) in the rates of protein synthesis in TGF-beta and VEGF of fetal fibroblast. In this study, these results may reflect the possibility that fetal fibroblast are more susceptible to change in oxygen and has a superior rate of angiogenesis through increased VEGF expression. The possible superiority of angiogenesis in fetal fibroblast may play an important role in scarless wound healing.

An Assay Method for Screening Inhibitors of Prolyl 4-hydroxylase in Immortalized Rat Hepatic Stellate HSC-T6 Cells

  • Choi, Hwa-Jung;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.261-265
    • /
    • 2007
  • Hydroxyproline (HYP) is a post-translational product of proline hydroxylation catalyzed by an enzyme prolyl 4-hydroxylase (P4H) which plays a crucial role in the synthesis of all collagens. Considering the role of collagen and its significance in many clinically important diseases such as liver fibrosis, a great deal of attention has been directed toward the development of an assay at cell-based system. The reason is that cell-based assay system is more efficient than enzyme-based in vitro system and takes much less time than in vivo system. Several assay procedures developed for P4H are laborious, time-consuming and not feasible for the massive-screening. Here, we report the cell-based assay method of prolyl 4-hydroxylase in immortalized rat hepatic stellate HSC-T6 cells. To optimize the cell culture condition to assay for HYP content, various concentrations of reagents were treated for different times in HSC-T6 cells. Our data showed that the treatment with ascorbate in a hypoxic condition for 24 h resulted in the maximal increase of HYP by 1.8 fold. Alternatively, cobalt chloride ($5\;{\mu}M$) and ascorbate ($50\;{\mu}M$) in normoxic states exhibited similar effect on the production of HYP as in a hypoxic condition. Therefore, cobalt chloride can be substituted for a hypoxic condition when an anaerobic chamber is not available. Rosiglitazone and HOE077, known as inhibitors of collagen, synthesis decreased P4H enzyme activity by 32.3% and 15%, respectively, which coincided with previous reports from liver tissues. The level of the smooth muscle ${\alpha}$-actin, a marker of activated stellate cells, was significantly increased under hypoxia, suggesting that our experimental condition could work for screening the anti-fibrotic compounds. The assay procedure took only 3 days after treatment with agents, while assays from the primary stellate cells or liver tissues have taken several weeks. Considering the time and expenses, this assay method could be useful to screen the compounds for the inhibitor of prolyl 4-hydroxylase.

Annual Variation of Water Qualities in the Shihwa Lake (시화호 수질의 연변화 양상에 대한 연구)

  • Park, Jun-Kun;Kim, Eun-Soo;Cho, Sung-Rok;Kim, Kyung-Tae;Park, Yong-Chul
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.459-468
    • /
    • 2003
  • Annual variation of water qualities in the Shihwa Lake were observed 18 times from June 1996 to October 2001. We studied at the station of the upper streams and near the water gate of lake. After the flow of the outer seawater through the water gate, the surface salinity in Shihwa Lake increased to the range of 25-30 psu in both stations after October 1998. Due to the declination of the salinity differences between the surface and the bottom water, the pycnocline in which had existed until 1997 has weakened, and made the water column mix vertically. This led to the improvement of anoxic/hypoxic environment at bottom waters after April 1998. However, despite the continuous flow of the outer seawater, the concentrations of chlorophyll-a at surface layer were varied from $2{\mu}g/l\;to\;60{\mu}g/l$, and these values indicated the eutrophication. The following organic matter load was greatly influencing the surface layer's COD concentration. During the rainy season, the salinity at the surface layer to the below 15 psu resulting in stratification between the surface and bottom layer. Organic matters that were provided from the surface layer to the bottom layer due to active primary production in the year exhausted dissolved oxygen at the bottom layer, and the bulks of organic matters at bottom gave rise to hypoxic or anoxic environment. It was observed that the enrichment of ammonia and phosphate were main factors to worsen the water quality of the Shihwa Lake. The results of examining the annual variations in Shiwha Lake through principal component analysis shown that water characteristics in the rainy season were similar with those before input of outer sea water.

A Case of Subcutaneous Fat Necrosis in Neonate with Meconium Aspiration Syndrome (태변 흡인 증후군 신생아에서의 피하지방괴사 1례)

  • Hong, Mi Ae;Oh, Kyung Chang;Ahn, Seung In;Shin, Hye Jung;Chang, Jin Keun;Lee, Byung Doo;Kim, Beyong Il;Choi, Jung-Hwan
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.11
    • /
    • pp.1422-1425
    • /
    • 2002
  • Subcutaneous fat necrosis in neonates is a rare disease characterized by skin lesions, which may be single or multiple, poorly circumscribed and often tender erythematous nodules or plaques on cheeks, buttocks, back, arms, and thighs. These symptoms are usually self-limited; resolution occurs over a period of weeks to months. Subcutaneous fat necrosis affects full term and healthy-appearing infants who have experienced perinatal distress such as hypoxic insult, birth trauma and hypothermia. Most skin lesions appear within the first two weeks of life. We experienced a case of subcutaneous fat necrosis in a neonate with hypoxic insult and report the case with a brief review of the literature.

Effect of Superoxide Dismutase on the Release of [$^3H$]-5-Hydroxytrytamine after Hypoxia from Rat Hippocampal Slices (흰쥐 해마 절편에서 저산소증에 의한 [$^3H$-5-Hydroxytrytamine의 유리 변동에 미치는 superoxide dismutase/catalase의 영향)

  • 이경은;박월미;배영숙
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.359-365
    • /
    • 1997
  • Many factors are known to be responsible for cerebral ischemic injury, such as excitatory neurotransmitters, increased intraneuronal calcium, or disturbance of cellular energy metabolism. Recently, oxygen free radicals, formed during ischemia/reperfusion, have been proposed as one of the main causes of ischemia/reperfusion injury. Therefore, to investigate the role of oxygen free radical during ischemia/reperfusion, in the present study the effect of endogenous oxygen free radical scavenger, superoxide dismutase / catalase(SOD / catalase) on the release of [$^3$H]-5-hydroxytryptamine([$^3$H]-5-HT) during hypoxia/reoxygenation in rat hippocampal slices was measured. The hippocampus was obtained from the rat brain and sliced 400 gm thickness with manual chopper. After 30 min's preincubation in the normal buffer, the slices were incubated for 20 min in a buffer containing [$^3$H]-5-HT(0.1 $\mu$M, 74 $\mu$Ci) for uptake, and washed. To measure the release of [$^3$H]-5-HT into the buffer, the incubation medium was drained off and refilled every ten minutes through a sequence of 14 tubes. Induction of hypoxia for 20 min (gassing it with 95% N$_2$/5% CO$_2$) was done in the 6th and 7th tube, and oxygen free radical scavenger, SOD / catalase was added 10 minutes prior to induction of hypoxia. The radioactivity in each buffer and the tissue were counted using liquid scintillation counter and the results were expressed as a percentage of the total activity. When slices were exposed to hypoxia for 20 min, [$^3$H]-5-HT release was markedly decreased and a rebound release of [$^3$H]-5-HT was observed on the post-hypoxic reoxygenation period. SOD / catalase did not changed the release of [$^3$H]-5-HT in control group, but inhibited the decrease of [$^3$H]-5-HT release in hypoxic period and rebound increase of [$^3$H]-5-HT in reoxygenation period. This result suggest that superoxide anion may play a role in the hypoxic-, and reoxygenation-induced change of [$^3$H]-5-HT release in rat hippocampal slices.

  • PDF

Ecology of the Macrobenthic Community in Chinhae Bay, Korea -1. Benthic Environment- (진해만 저서동물의 군집생태 -1. 저서환경-)

  • LIM Hyun Sig;HONG Jae-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.200-214
    • /
    • 1994
  • In order to clarify the benthic environmental properties as a part of a study on the macrobenthic community in the Chinhae Bay System, water temperature, salinity and dissolved oxygen (DO) in surface and bottom water layers, mean grain size (${\phi}$) and sediment organic carborn (SOC) in surface sediment were analyzed at twelve stations during the period from June 1987 to May 1990. A high sediment organic carbon and hypoxic condition in bottom water due to the development of summer stratification and fine sediment texture toward the inner bay were important environmental characteristics of Chinhae Bay. Hypoxic conditions began to develop in the inner bay from May, and gradually spread toward the outer bay in summer with a peak in September when half the bay was affected by this oxygen deficiency. Recovery from this hypoxic condition in the bottom layer was observed from the beginning of autumn together with a disappearance of the summer stratification. Principal component analyses were carried out from the following five environmental variables:mean water temperature, salinity, dissolved oxygen in the bottom layer and mean grain size, sediment organic carbon in surface sediment. The twelve stations were classified into four areal groups based on the analyses. The division of the areal groups had high correlations to the sediment organic carbon content.

  • PDF