• Title/Summary/Keyword: Hypoxia-ischemia

Search Result 96, Processing Time 0.019 seconds

Fas/FasL expression in the hippocampus of neonatal rat brains follwing hypoxic-ischemic injury (저산소성 허혈성 손상을 받은 신생 흰쥐 뇌 해마에서 Fas와 FasL 단백 발현)

  • Chang, Young Pyo;Kim, Myeung Ju;Lee, Young Il;Im, Ik Je;Cho, Jae Ju;Kim, Jong Wan;Yeo, Sung Moon
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.2
    • /
    • pp.198-202
    • /
    • 2006
  • Purpose : Fas is a cell surface receptor that transduces apoptotic death signals. Interaction of extracelluar domain of Fas with Fas ligand(FasL) triggers the apoptotic process in many diseases. We investigated the expression of Fas and FasL in the hippocampus of 7-day-old newborn rat brains following hypoxia-ischemia injury. Methods : The 7-days-old newborn rats were exposed to 8 percent oxygen for two hours after the ligation of right common carotid arteries. The newborn rats were killed and their brains were removed at 12, 14 and 48 hours after hypoxic-ischemic injury. The expressions of Fas and FasL of the right hippocampus were observed by western blotting and immunofluorescent staining. Results : Fas and FasL were strongly expressed in the right hippocampus ipsilateral to the ligation of the common carotid artery by western blotting at 12 hours following hypoxic-ischemic injury, and then slowly decreased. The immunofluorescent expressions of Fas and FasL strongly increased in the CA1 area of the right hippocampus at 12 and 24 hours following hypoxic-ischemic injury. The immunofluorescent expression of Fas decreased at 48 hours, but the expression of FasL persisted strongly at 48 hours following hypoxic-ischemic injury. Conclusion : The interaction of Fas with FasL on the cell surface may be involved in neuronal injury following hypoxic-ischemic injury in the developing brain.

Anti-apoptotic effect of fermented Citrus sunki peel extract on chemical hypoxia-induced neuronal injury (화학적 저산소증이 유도하는 뇌신경세포 손상에 있어서 미성숙 진귤 과피 발효 추출물의 보호 효과)

  • Ko, Woon Chul;Lee, Sun Ryung
    • Journal of Nutrition and Health
    • /
    • v.48 no.5
    • /
    • pp.451-456
    • /
    • 2015
  • Purpose: Neuronal apoptotic events induced by aging and hypoxic/ischemic conditions is an important risk factor in neurodegenerative diseases such as ischemia stroke and Alzheimer's disease. The peel of Citrus sunki Hort. ex Tanaka has long been used as a traditional medicine, based on multiple biological activities including anti-oxidant, anti-inflammation, and anti-obesity. In the current study, we examined the actions of fermented C. sunki peel extract against cobalt chloride ($CoCl_2$)-mediated hypoxic death in human neuroblastoma SH-SY5Y cells. Methods: Cell viability was measured by trypan blue exclusion. Expression of apoptosis related proteins and release of cytochrome c were detected by western blot. Production of intracellular reactive oxygen species (ROS) and apoptotic morphology were examined using 2',7'-dichlorofluorescin diacetate (DCF-DA) and 4',6-diamidino-2-phenylindole (DAPI) staining. Results: Exposure to $CoCl_2$, a well-known mimetic agent of hypoxic/ischemic condition, resulted in neuronal cell death via caspase-3 dependent pathway. Extract of fermented C. sunki peel significantly rescued the $CoCl_2$-induced neuronal toxicity with the cell viability and appearance of apoptotic morphology. Cytoprotection with fermented C. sunki peel extract was associated with a decrease in activities of caspase-3 and cleavage of poly (ADP ribose) polymerase (PARP). In addition, increase in the intracellular ROS and release of cytochrome c from mitochondria to the cytosol were inhibited by treatment with extract of fermented C. sunki peel. Conclusion: Based on these data, fermented C. sunki peel extract might have a protective effect against $CoCl_2$-induced neuronal injury partly through generation of ROS and effectors involved in mitochondrial mediated apoptosis.

Infratemporal fossa approach: the modified zygomatico-transmandibular approach

  • Kim, Soung Min;Paek, Sun Ha;Lee, Jong Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.3.1-3.9
    • /
    • 2019
  • Background: The infratemporal fossa (ITF) is an anatomical lateral skull base space composed by the zygoma, temporal, and the greater wing of the sphenoid bone. Due to its difficult approach, surgical intervention at the ITF has remained a heavy burden to surgeons. The aim of this article is to review basic skull base approaches and ITF structures and to avoid severe complications based on the accurate surgical knowledge. Methods: A search of the recent literature using MEDLINE (PubMed), Embase, Cochrane Library, and other online tools was executed using the following keyword combinations: infratemporal fossa, subtemporal fossa, transzygomatic approach, orbitozygomatic approach, transmaxillary approach, facial translocation approach, midface degloving, zygomatico-transmandibular approach, and lateral skull base. Aside from our Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) trial, there have been very few randomized controlled trials. The search data for this review are summarized based on the authors' diverse clinical experiences. Results: We divided our results based on representative skull base approaches and the anatomy of the ITF. Basic approaches to the ITF include endoscopic endonasal, transzygomatic, orbitozygomatic, zygomatico-transmandibular, transmaxillary, facial translocation, and the midfacial degloving approach. The borders and inner structures of the ITF (with basic lateral skull base dissection schemes) are summarized, and the modified zygomatico-transmandibular approach (ZTMA) is described in detail. Conclusions: An anatomical basic knowledge would be required for the appropriate management of the ITF pathology for diverse specialized doctors, including maxillofacial, plastic, and vascular surgeons. The ITF approach, in conjunction with the application of microsurgical techniques and improved perioperative care, has permitted significant advances and successful curative outcomes for patients having malignancy in ITF.

Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70

  • Zhang, Jun;Wang, Haiyan;Sun, Xizhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1069-1078
    • /
    • 2021
  • Sevoflurane postconditioning (SPostC) has been proved effective in cardioprotection against myocardial ischemia/reperfusion injury. It was also reported that heat shock protein 70 (HSP70) could be induced by sevoflurane, which played a crucial role in hypoxic/reoxygenation (HR) injury of cardiomyocytes. However, the mechanism by which sevoflurane protects cardiomyocytes via HSP70 is still not understood. Here, we aimed to investigate the related mechanisms of SPostC inducing HSP70 expression to reduce the HR injury of cardiomyocytes. After the HR cardiomyocytes model was established, the cells transfected with siRNA for HSP70 (siHSP70) or not were treated with sevoflurane during reoxygenation. The lactate dehydrogenase (LDH) level was detected by colorimetry while cell viability and apoptosis were detected by MTT and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect HSP70, apoptosis-, cell cycle-associated factors, iNOS, and Cox-2 expressions. Enzyme-linked immuno sorbent assay (ELISA) was used to measure malondialdehyde (MDA) and superoxide dismutase (SOD). SPostC decreased apoptosis, cell injury, oxidative stress and inflammation and increased viability of HR-induced cardiomyocytes. In addition, SPostC downregulated Bax and cleaved caspase-3 levels, while SPostC upregulated Bcl-2, CDK-4, Cyclin D1, and HSP70 levels. SiHSP70 had the opposite effect that SPostC had on HR-induced cardiomyocytes. Moreover, siHSP70 further reversed the effect of SPostC on apoptosis, cell injury, oxidative stress, inflammation, viability and the expressions of HSP70, apoptosis-, and cell cycle-associated factors in HR-induced cardiomyocytes. In conclusion, this study demonstrates that SPostC can reduce the HR injury of cardiomyocytes by inducing HSP70 expression.

Paeoniflorin treatment regulates TLR4/NF-κB signaling, reduces cerebral oxidative stress and improves white matter integrity in neonatal hypoxic brain injury

  • Yang, Fan;Li, Ya;Sheng, Xun;Liu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.97-109
    • /
    • 2021
  • Neonatal hypoxia/ischemia (H/I), injures white matter, results in neuronal loss, disturbs myelin formation, and neural network development. Neuroinflammation and oxidative stress have been reported in neonatal hypoxic brain injuries. We investigated whether Paeoniflorin treatment reduced H/I-induced inflammation and oxidative stress and improved white matter integrity in a neonatal rodent model. Seven-day old Sprague-Dawley pups were exposed to H/I. Paeoniflorin (6.25, 12.5, or 25 mg/kg body weight) was administered every day via oral gavage from postpartum day 3 (P3) to P14, and an hour before induction of H/I. Pups were sacrificed 24 h (P8) and 72 h (P10) following H/I. Paeoniflorin reduced the apoptosis of neurons and attenuated cerebral infarct volume. Elevated expression of cleaved caspase-3 and Bad were regulated. Paeoniflorin decreased oxidative stress by lowering levels of malondialdehyde and reactive oxygen species generation and while, and it enhanced glutathione content. Microglial activation and the TLR4/NF-κB signaling were significantly down-regulated. The degree of inflammatory mediators (interleukin 1β and tumor necrosis factor-α) were reduced. Paeoniflorin markedly prevented white matter injury via improving expression of myelin binding protein and increasing O1-positive olidgodendrocyte and O4-positive oligodendrocyte counts. The present investigation demonstrates the potent protective efficiency of paeoniflorin supplementation against H/I-induced brain injury by effectually preventing neuronal loss, microglial activation, and white matter injury via reducing oxidative stress and inflammatory pathways.

Improved Myoardial Protection by Addition of Fructose-1.6-diphosphate to Crystalloid Cardioplegic Solution in the Isolated Working Rat Heart (흰쥐의 적출 작업성 심장에서 허혈성 심정지시 Fructose-1.6-diphosphate(FDP)의 심근보호 작용)

  • 나국주
    • Journal of Chest Surgery
    • /
    • v.23 no.4
    • /
    • pp.646-653
    • /
    • 1990
  • Currently numerous methods are in use for myocardial protection from the ravages of ischemia and hypoxia. This study was designed to compare with FDP-GIK[Group II, n=8] and GIK cardioplegic solution[Group I, n=8] in ability of myocardial protection and was examined in the isolated working rat heart subjected to long period[120 min] of hypothermic[10 - 15K] ischemic arrest with multidose[every 30 min] cardioplegic infusion. During postischemic reperfusion period 20 min, hemodynamic functions[aortic flow, coronary flow, peak aortic pressure, cardiac output, heart rate], biochemical enzymatic & electrical activities were evaluated. The time from onset of reperfusion to the return of regular sinus rhythm was significantly reduced from 87$\pm$3 sec to 17$\pm$2 sec[P<0.05]. The postischemic recovery of aortic flow was better in the group II [95.1$\pm$3.3% of its preischemic control level] than in the Group I [75.4$\pm$6.8%] [P<0.05]. Cardiac output and stroke volume was also better in the group[91.3$\pm$1.6%, 89.4$\pm$2.6%, respectively] than in the Group I [79.1$\pm$3.7%, 77.0$\pm$4.8%, respectively] [P<0. 05]. Creatine kinase leakage was also significantly reduced from 33.8$\pm$4.9 IU /10 min / gm * dry weight to 15.4$\pm$3.6 IU /10 min /gm * dry weight[P<0.05]. It is suggested that adding FDP to GIK cardioplegic solution improves its ability to protect the heart against long period of hypoxic ischemia.

  • PDF

Hydrogen sulfide restores cardioprotective effects of remote ischemic preconditioning in aged rats via HIF-1α/Nrf2 signaling pathway

  • Wang, Haixia;Shi, Xin;Cheng, Longlong;Han, Jie;Mu, Jianjun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.239-249
    • /
    • 2021
  • The present study explored the therapeutic potential of hydrogen sulfide (H2S) in restoring aging-induced loss of cardioprotective effect of remote ischemic preconditioning (RIPC) along with the involvement of signaling pathways. The left hind limb was subjected to four short cycles of ischemia and reperfusion (IR) in young and aged male rats to induce RIPC. The hearts were subjected to IR injury on the Langendorff apparatus after 24 h of RIPC. The measurement of lactate dehydrogenase, creatine kinase and cardiac troponin served to assess the myocardial injury. The levels of H2S, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible factor (HIF-1α) were also measured. There was a decrease in cardioprotection in RIPC-subjected old rats in comparison to young rats along with a reduction in the myocardial levels of H2S, CBS, CSE, HIF-1α, and nuclear: cytoplasmic Nrf2 ratio. Supplementation with sodium hydrogen sulfide (NaHS, an H2S donor) and l-cysteine (H2S precursor) restored the cardioprotective actions of RIPC in old hearts. It increased the levels of H2S, HIF-1α, and Nrf2 ratio without affecting CBS and CSE. YC-1 (HIF-1α antagonist) abolished the effects of NaHS and l-cysteine in RIPC-subjected old rats by decreasing the Nrf2 ratio and HIF-1α levels, without altering H2S. The late phase of cardioprotection of RIPC involves an increase in the activity of H2S biosynthetic enzymes, which increases the levels of H2S to upregulate HIF-1α and Nrf2. H2S has the potential to restore aging-induced loss of cardioprotective effects of RIPC by upregulating HIF-1α/Nrf2 signaling.

NecroX-5 exerts anti-inflammatory and anti-fibrotic effects via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway in hypoxia/reoxygenation-treated rat hearts

  • Thu, Vu Thi;Kim, Hyoung Kyu;Long, Le Thanh;Thuy, To Thanh;Huy, Nguyen Quang;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2016
  • Inflammatory and fibrotic responses are accelerated during the reperfusion period, and excessive fibrosis and inflammation contribute to cardiac malfunction. NecroX compounds have been shown to protect the liver and heart from ischemia-reperfusion injury. The aim of this study was to further define the role and mechanism of action of NecroX-5 in regulating inflammation and fibrosis responses in a model of hypoxia/reoxygenation (HR). We utilized HR-treated rat hearts and lipopolysaccharide (LPS)-treated H9C2 culture cells in the presence or absence of NecroX-5 ($10{\mu}mol/L$) treatment as experimental models. Addition of NecroX-5 significantly increased decorin (Dcn) expression levels in HR-treated hearts. In contrast, expression of transforming growth factor beta 1 ($TGF{\beta}1$) and Smad2 phosphorylation (pSmad2) was strongly attenuated in NecroX-5-treated hearts. In addition, significantly increased production of tumor necrosis factor alpha ($TNF{\alpha}$), $TGF{\beta}1$, and pSmad2, and markedly decreased Dcn expression levels, were observed in LPS-stimulated H9C2 cells. Interestingly, NecroX-5 supplementation effectively attenuated the increased expression levels of $TNF{\alpha}$, $TGF{\beta}1$, and pSmad2, as well as the decreased expression of Dcn. Thus, our data demonstrate potential antiinflammatory and anti-fibrotic effects of NecroX-5 against cardiac HR injuries via modulation of the $TNF{\alpha}/Dcn/TGF{\beta}1/Smad2$ pathway.

The Effects of Intracellular Monocarboxylates on the ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong;Ho, Won-Kyung;Earm, Yung E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.581-589
    • /
    • 1998
  • A regulating mechanism of the ATP-sensitive potassium channels $(K_{ATP}\;channels)$ is yet to fully explained. This study was carried out to investigate the effects of intracellular application of monocarboxylates (acetate, formate, lactate, and pyruvate) on $K_{ATP}$ channels in isolated rabbit ventricular myocytes. Single channel currents of $K_{ATP}$ channels were recorded using the excised inside-out or permeabilized attached (open-cell) patch-clamp technique at room temperature. Intracellular application of acetate, formate and pyruvate led to an inhibition of channel activity, whereas intracellular application of lactate increased channel activity. These effects were reversible upon washout. Analysis of single channel kinetics showed that monocarboxylates did not affect open-time constant and close-time constant. These results suggest that monocarboxylates participate in modulating $K_{ATP}$ channels activity in cardiac cells and that modulation of $K_{ATP}$ channels activity may resolve the discrepancy between the low $K_i$ in excised membrane patches and high levels of intracellular ATP concentration during myocardial ischemia or hypoxia.

  • PDF

Motor Peripheral Neuropathy Involved Bilateral Lower Extremities Following Acute Carbon Monoxide Poisoning: A Case Report (급성 일산화탄소 중독 환자에서 발생한 양하지 말초 운동신경병증 1례)

  • Choi, Jae-Hyung;Lim, Hoon
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.13 no.1
    • /
    • pp.46-49
    • /
    • 2015
  • Carbon monoxide (CO) intoxication is a leading cause of severe neuropsychological impairments. Peripheral nerve injury has rarely been reported. Following are brief statements describing the motor peripheral neuropathy involved bilateral lower extremities of a patient who recovered following acute carbon monoxide poisoning. After inhalation of smoke from a fire, a 60-year-old woman experienced bilateral leg weakness without edema or injury. Neurological examination showed diplegia and deep tendon areflexia in lower limbs. There was no sensory deficit in lower extremities, and no cognitive disturbances were detected. Creatine kinase was normal. Electroneuromyogram patterns were compatible with the diagnosis of bilateral axonal injury. Clinical course after normobaric oxygen and rehabilitation therapy was marked by complete recovery of neurological disorders. Peripheral neuropathy is an unusual complication of CO intoxication. Motor peripheral neuropathy involvement of bilateral lower extremities is exceptional. Various mechanisms have been implicated, including nerve compression secondary to rhabdomyolysis, nerve ischemia due to hypoxia, and direct nerve toxicity of carbon monoxide. Prognosis is commonly excellent without sequelae. Emergency physicians should understand the possible-neurologic presentations of CO intoxication and make a proper decision regarding treatment.

  • PDF