• 제목/요약/키워드: Hypoxia/reperfusion

검색결과 44건 처리시간 0.03초

The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts

  • Son, Euncheol;Lee, Dongju;Woo, Chul-Woong;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권2호
    • /
    • pp.173-183
    • /
    • 2020
  • An in vitro model for ischemia/reperfusion injury has not been well-established. We hypothesized that this failure may be caused by serum deprivation, the use of glutamine-containing media, and absence of acidosis. Cell viability of H9c2 cells was significantly decreased by serum deprivation. In this condition, reperfusion damage was not observed even after simulating severe ischemia. However, when cells were cultured under 10% dialyzed FBS, cell viability was less affected compared to cells cultured under serum deprivation and reperfusion damage was observed after hypoxia for 24 h. Reperfusion damage after glucose or glutamine deprivation under hypoxia was not significantly different from that after hypoxia only. However, with both glucose and glutamine deprivation, reperfusion damage was significantly increased. After hypoxia with lactic acidosis, reperfusion damage was comparable with that after hypoxia with glucose and glutamine deprivation. Although high-passage H9c2 cells were more resistant to reperfusion damage than low-passage cells, reperfusion damage was observed especially after hypoxia and acidosis with glucose and glutamine deprivation. Cell death induced by reperfusion after hypoxia with acidosis was not prevented by apoptosis, autophagy, or necroptosis inhibitors, but significantly decreased by ferrostatin-1, a ferroptosis inhibitor, and deferoxamine, an iron chelator. These data suggested that in our SIR model, cell death due to reperfusion injury is likely to occur via ferroptosis, which is related with ischemia/reperfusion-induced cell death in vivo. In conclusion, we established an optimal reperfusion injury model, in which ferroptotic cell death occurred by hypoxia and acidosis with or without glucose/glutamine deprivation under 10% dialyzed FBS.

저산소/재관류로부터 청폐사간탕의 PC12 세포 보호 효과 (Protective Effect of Metabolized Chungpesagan-tang on Hypoxia/Reperfusion Induced-PC12 Cell Damage)

  • 소윤조
    • 생약학회지
    • /
    • 제36권2호통권141호
    • /
    • pp.151-157
    • /
    • 2005
  • This research was performed to investigate the protective effect of Chungpesagan-tang (CST) from hypoxia/reperfusion induced-PC12 cell damage. To elucidate the mechanism of the protective effect of CST, cell viability, changes in activities of superoxide dismutase, glutathione peroxidase, catalase, caspase 3 and the production of malondialdehyde were observed after treating PC12 cells with CST which was metabolized by rat liver homogenate. Pretreatment of CST with liver homogenate appeared to increase its protective effect against hypoxia/reperfusion insult. The result showed that CST exhibited the highest protective effect against hypoxia/reperfusion at the dose of $1\;{\mu}g/ml$ in PC12 cells, probably by recovering the redox enzyme activities and MDA to control level.

간효소에 의해 대사된 양격산화탕의 저산소/재관류로부터 PC12 세포 보호효과 (Protective Effect of Yangguksanwha-tang Metabolized by Liver Homogenate on Hypoxia-reperfusion Induced PC12 Cell Damage)

  • 소윤조
    • 약학회지
    • /
    • 제49권1호
    • /
    • pp.97-102
    • /
    • 2005
  • The protective effect of Yangguksanwha-tang (YST) against hypoxia-reperfusion insult was investigated in PC12 cells. To elucidate the mechanism of the protective effect of YST, cell viability, the changes in activities of superoxide dismutase, glutathione peroxidase, catalase, caspase 3 and the production of malondialdehyde were observed after treating PC12 cells with YST which was metabolized by rat liver homogenate. Pretreatment of YST with liver homogenate appeared to increase its protective effect against hypoxia-reperfusion insult. The result showed that YST had the highest protective effect against hypoxia/reperfusion at the dose of $2\;{\mu}g/ml$ in PC12 cells, probably by recovering the redox enzyme activities and MDA to control level.

Differential Changes of ATP-sensitive Potassium Channel Current after Hypoxia-reperfusion Treatment in Mouse Neuroblastoma 2a (N2a) Cell

  • Park, Ji-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권4호
    • /
    • pp.183-186
    • /
    • 2002
  • Ischemic damage is one of the most serious problems. The openers of KATP channel have been suggested to have an effect to limit the ischemic damage. However, it is not yet clear how KATP channels of a cell correspond to hypoxic damage. To address the question, N2a cells were exposed to two different hypoxic conditions as follows: 6 hours hypoxia followed by 3 hours reperfusion and 12 hours hypoxia followed by 3 hours reperfusion. As the results, 6 hours hypoxic treatment increased glibenclamide- sensitive basal $K_{ATP}$ current activity (approximately 6.5-fold at 0 mV test potential) when compared with nomoxic condition. In contrast, 12 hours hypoxic treatment induced a relatively smaller change in the $K_{ATP}$ current density (2.5-fold at 0 mV test potential). Additionally, in experiments where $K_{ATP}$ channels were opened using diazoxide, the hypoxia for 6 hours significantly increased the current density in comparison to control condition (p<0.001). Interestingly, the augmentation in the $K_{ATP}$ current density reduced after exposure to the 12 hours hypoxic condition (p<0.001). Taken together, these results suggest that $K_{ATP}$ channels appear to be recruited more in cells exposed to the 6 hours hypoxic condition and they may play a protective role against hypoxia-reperfusion damage within the time range.

저산소상태에서 육미지황원의 뇌신경세포 보호효과에 대한 연구 (Effects of Yukmijihwangwon on Hypoxia of Neuronal Cells)

  • 강봉주;홍성길;조동욱
    • 한국한의학연구원논문집
    • /
    • 제7권1호
    • /
    • pp.115-124
    • /
    • 2001
  • Yukmijihwangwon (YM) has been known to reinforce the vital essence and have antioxidant activities. This study was designed to examine the inhibitory effects of YM against in vitro hypoxia/reperfusion-induced inflammatory response. We have characterized the production of prostaglandin $E_2$ and arachidonic acid during hypoxia/reperfusion in the human neuroblastoma SK-N-MC and human monocytic macrophage U937 cells and the ingibitory effect of YM on these inflammation-related substance formation has been found out in this study. To investigate inhibition of COX expression by YM during hypoxia in vitro. This result suggested that YM used in this experiment reinforced antiinflammatory potentials and protected cells against hypoxia/reperfusion induced inflammatory response.

  • PDF

Role of Poly (ADP-ribose) Polymerase Activation in Chemical Hypoxia-Induced Cell Injury in Renal Epithelial Cells

  • Jung Soon-Hee
    • 대한의생명과학회지
    • /
    • 제11권4호
    • /
    • pp.441-446
    • /
    • 2005
  • The molecular mechanism of ischemia/reperfusion injury remains unclear. Reactive oxygen species (ROS) are implicated in cell death caused by ischemia/reperfusion in vivo or hypoxia in vitro. Poly (ADP-ribose) polymerase (PARP) activation has been reported to be involved in hydrogen peroxide-induced cell death in renal epithelial cells. This study was therefore undertaken to evaluate the role of P ARP activation in chemical hypoxia in opossum kidney (OK) cells. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport. Exposure of OK cells to chemical hypoxia resulted in a time-dependent cell death. In OK cells subjected to chemical hypoxia, the generation of ROS was increased, and this increase was prevented by the $H_2O_2$ scavenger catalase. Chemical hypoxia increased P ARP activity and chemical hypoxia-induced cell death was prevented by the inhibitor of PARP activation 3-aminobenzamide. Catalase prevented OK cell death induced by chemical hypoxia. $H_2O_2$ caused PARP activation and $H_2O_2-induced$ cell death was prevented by 3-aminobenzamide. Taken together, these results indicate that chemical hypoxia-induced cell injury is mediated by PARP activation through H202 generation in renal epithelial cells.

  • PDF

흰쥐 해마 절편에서 저산소증에 의한 [$^3H$-5-Hydroxytrytamine의 유리 변동에 미치는 superoxide dismutase/catalase의 영향 (Effect of Superoxide Dismutase on the Release of [$^3H$]-5-Hydroxytrytamine after Hypoxia from Rat Hippocampal Slices)

  • 이경은;박월미;배영숙
    • Toxicological Research
    • /
    • 제13권4호
    • /
    • pp.359-365
    • /
    • 1997
  • Many factors are known to be responsible for cerebral ischemic injury, such as excitatory neurotransmitters, increased intraneuronal calcium, or disturbance of cellular energy metabolism. Recently, oxygen free radicals, formed during ischemia/reperfusion, have been proposed as one of the main causes of ischemia/reperfusion injury. Therefore, to investigate the role of oxygen free radical during ischemia/reperfusion, in the present study the effect of endogenous oxygen free radical scavenger, superoxide dismutase / catalase(SOD / catalase) on the release of [$^3$H]-5-hydroxytryptamine([$^3$H]-5-HT) during hypoxia/reoxygenation in rat hippocampal slices was measured. The hippocampus was obtained from the rat brain and sliced 400 gm thickness with manual chopper. After 30 min's preincubation in the normal buffer, the slices were incubated for 20 min in a buffer containing [$^3$H]-5-HT(0.1 $\mu$M, 74 $\mu$Ci) for uptake, and washed. To measure the release of [$^3$H]-5-HT into the buffer, the incubation medium was drained off and refilled every ten minutes through a sequence of 14 tubes. Induction of hypoxia for 20 min (gassing it with 95% N$_2$/5% CO$_2$) was done in the 6th and 7th tube, and oxygen free radical scavenger, SOD / catalase was added 10 minutes prior to induction of hypoxia. The radioactivity in each buffer and the tissue were counted using liquid scintillation counter and the results were expressed as a percentage of the total activity. When slices were exposed to hypoxia for 20 min, [$^3$H]-5-HT release was markedly decreased and a rebound release of [$^3$H]-5-HT was observed on the post-hypoxic reoxygenation period. SOD / catalase did not changed the release of [$^3$H]-5-HT in control group, but inhibited the decrease of [$^3$H]-5-HT release in hypoxic period and rebound increase of [$^3$H]-5-HT in reoxygenation period. This result suggest that superoxide anion may play a role in the hypoxic-, and reoxygenation-induced change of [$^3$H]-5-HT release in rat hippocampal slices.

  • PDF

Effects of pH, Buffer System and Lactate on the Simulated Ischemia-reperfusion Injury of H9c2 Cardiac Myocytes

  • Lee, Jun-Whee;Lee, Hye-Kyung;Kim, Hae-Won;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권2호
    • /
    • pp.45-55
    • /
    • 2007
  • We elucidated the effects of various components of ischemic medium on the outcome of simulated ischemia-reperfusion injury. Hypoxia for up to 12 hours induced neither apoptotic bodies nor LDH release. However, reoxygenation after 6 or 12 hours of hypoxia resulted in a marked LDH release along with morphological changes compatible with oncotic cell death. H9c2 cells were then subjected to 6 hours of simulated ischemia by exposing them to modified hypoxic glucose-free Krebs-Henseleit buffer. Lowered pH (pH 6.4) of simulated-ischemic buffer resulted in the generation of apoptotic bodies during ischemia, with no concomitant LDH release. The degree of reperfusion-induced LDH release was not affected by the pH of ischemic buffer. Removal of sodium bicarbonate from the simulated ischemic buffer markedly increased cellular damages during both the simulated ischemia and reperfusion. Addition of lactate to the simulated ischemic buffer increased apoptotic cell death during the simulated ischemia. Most importantly, concomitant acidosis and high lactate concentration in ischemic buffer augmented the reperfusion-induced oncotic cell death. These results confirmed the influences of acidosis, bicarbonate deprivation and lactate on the progression and outcome of the simulated ischemia-reperfusion, and also demonstrated that concomitant acidosis and high lactate concentration in simulated ischemic buffer contribute to the development of reperfusion injury.

PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 시호 세포보호효과 (Protective Effect of Bupleuri Radix on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil)

  • 최삼열;정승현;신길조;문일수;이원철
    • 대한한의학회지
    • /
    • 제23권4호
    • /
    • pp.113-124
    • /
    • 2002
  • Objects: This research was conducted to investigate the protective effect of Bupleuri Radix against ischemic damage using PC12 cells and global ischemia in gerbils, Methods: To observe the protective effect of Bupleuri Radixon ischemic damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Bupleuri Radix during ischemic damage. Gerbils were divided into three groups: a normal group, a 5-minute two-vessel occlusion (2VO) group and a Bupleun Radix administered group after 2VO. The CCAs were occluded by microclip for 5 minutes, Bupleuri Radix was administered orally for 7 days after 2VO. Histological analysis was performed on the 7th day. For histological analysis, the brain tissue was stained with 1 % of cresyl violet solution. Results: 1. Bupleuri Radix has a protective effect against ischemia in the CA1 area of the gerbil's hippocampus 7 days after 5-minute occlusion. 2. In the hypoxia/reperfusion model using PC12 cells, the Bupleuri Radix has a protective effect against ischemia in the dose of 0.2{\;}\mu\textrm{g}/ml,2{\;}\mu\textrm{g}/ml{\;}and{\;} 20{\;}\mu\textrm{g}/ml$. 3. Bupleuri Radix increased the activities of glutathione peroxidase and catalase. 4. The increased activity of superoxidedismutase (SOD) by ischemic damage might have been induced as an act of self-protection. This study suggests that Bupleuri Radix has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils. Bupleuri Radix also has protective effect on a hypoxia/reperfusion cell culture model using PC12 cells. Conclusions: Bupleuri Radix has protective effect against ischemic brain damage during the early stages of ischemia.

  • PDF

Beneficial Effect of Pentoxifylline on Hypoxia-Induced Cell Injury in Renal Proximal Tubular Cells

  • Jung Soon-Hee
    • 대한의생명과학회지
    • /
    • 제10권4호
    • /
    • pp.341-346
    • /
    • 2004
  • Tumor necrosis factor-α (TNF-α) or its mRNA expression are increased in acute nephrosis of various types including ischemia/reperfusion injury. This study was undertaken to determine whether pentoxifylline (PTX), an inhibitor of TNF-α production, provides a protective effect against hypoxia-induced cell injury in rabbit renal cortical slices. To induce hypoxia-induced cell injury, renal cortical slices were exposed to 100% N₂ atmosphere. Control slices were exposed to 100% O₂ atmosphere. The cell injury was estimated by measuring lactate dehydrogenase (LDH) release and p-aminohippurate (PAH) uptake. Exposure of slices to hypoxia increased the LDH release in a time-dependent manner. However, when slices were exposed to hypoxia in the presence of PTX, the LDH release was decreased. The protective effect of PTX was dose-dependent over the concentrations of 0.05∼1 mM. Hypoxia did not increase lipid peroxidation, whereas an organic hydroperoxide t-butylhydroperoxide (tBHP) resulted in a significant increase in lipid peroxidation. PTX did not affect tBHP-induced lipid peroxidation. Hypoxia decreased PAH uptake, which was significantly attenuated by PTX and glycine. tBHP-induced inhibition of PAH uptake was not altered by PTX, although it was prevented by antioxidant deferoxarnine. The PAH uptake by slices in rabbits with ischemic acute renal failure was prevented by PTX pretreatment. These results suggest that PTX may exert a protective effect against hypoxia-induced cell injury and its effect may due to inhibition of the TNF-α production, but not by its antioxidant action.

  • PDF