• Title/Summary/Keyword: Hypothesis Thresholding

Search Result 3, Processing Time 0.016 seconds

Identification of Vehicle Using Edge Detection (에지 검출에 의한 차량 식별)

  • Shin, SY;Kim, DK;Lee, CW;Lee, HC;Lee, TW;Park, KH
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.382-383
    • /
    • 2016
  • Canny edge detection of the image is composed of four kinds of Gaussian filter, gradient calculation, Non-maximum suppression, and Hypothesis Thresholding. Feature is the ratio between the vehicle body, the windows, and the wheels obtained from the edge image. Features that make the proportion of these vehicles are different for each respective model. We have identified by application of this algorithm where only a small vehicle.

  • PDF

Performance Analysis of the Image Segmentation Using an Intensity Histogram (밝기분포도를 이용한 영상영역화의 성능분석)

  • 김경수;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.504-509
    • /
    • 1987
  • In this paper a characteristics of image which can be segmented based on the thresholding technique using a histogram was investigated employing 3 parameters: the variance of pixel value, the average mean difference between target and background and the target size. The threshold value for the histogram segmentation was determined by applying the hypothesis testing theory. The performance of the selected threshold was evaluated by computing a probability of error. Since a priori probability can be easily obtained from the histogram, it was found that the Bayes decision rule which theoretically guarantees the minimum probability of error works better than the minimax criterion rule.

  • PDF

An Image Processing Algorithm for Detection and Tracking of Aerial Vehicles in Short-Range (무인항공기의 근거리 비행체 탐지 및 추적을 위한 영상처리 알고리듬)

  • Cho, Sung-Wook;Huh, Sung-Sik;Shim, Hyun-Chul;Choi, Hyoung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1115-1123
    • /
    • 2011
  • This paper proposes an image processing algorithms for detection and tracking of aerial vehicles in short-range. Proposed algorithm detects moving objects by using image homography calculated from consecutive video frames and determines whether the detected objects are approaching aerial vehicles by the Probabilistic Multi-Hypothesis Tracking method(PMHT). This algorithm can perform better than simple color-based detection methods since it can detect moving objects under complex background such as the ground seen during low altitude flight and consider the characteristics of vehicle dynamics. Furthermore, it is effective for the flight test due to the reduction of thresholding sensitivity against external factors. The performance of proposed algorithm is verified by applying to the onboard video obtained by flight test.