• Title/Summary/Keyword: Hypothalamic cells

Search Result 71, Processing Time 0.048 seconds

Stomach clusterin as a gut-derived feeding regulator

  • Cherl NamKoong;Bohye Kim;Ji Hee Yu;Byung Soo Youn;Hanbin Kim;Evonne Kim;So Young Gil;Gil Myoung Kang;Chan Hee Lee;Young-Bum Kim;Kyeong-Han Park;Min-Seon Kim;Obin Kwon
    • BMB Reports
    • /
    • v.57 no.3
    • /
    • pp.149-154
    • /
    • 2024
  • The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis.

Morphological Studies of the Central Neural Pathways to the Pancreas, Sanyinjiao(Sp6) and Yinlingquan(Sp9) using Pseudorabies Virus (Pseudorabies virus를 이용한 췌장과 삼음교(三陰交)(Sp6), 음릉천(陰陵泉)(Sp9)에서 투사되는 중추 신경로에 관한 형태학적 연구)

  • Kim, Cheol-Han;Lee, Su-Kyung;Yeom, Seung-Ryong;Kwon, Young-Dal;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.1
    • /
    • pp.23-38
    • /
    • 2009
  • Objectives : The purpose of this morphological studies was to investigate the relations between Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas of rats using peudorabies virus(PRV). Methods : We observed labeled neurons following the injection of PRV, Bartha strain, into the Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas of rats. After survival times of 4 days following the injection of PRV, the rats were perfused, and their spinal ganglia, spinal cord and brain stem were frozen sectioned($35{\mu}m$). These sections were strained by PRV immunohistchemical staining methods and observed with light microscope. Results : The results were as follows. 1. In the spinal ganglia, the overlap areas of PRV labeled neurons projecting to Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas were observed in T10-13 dorsal root ganglia. 2. In the spinal cord, the overlap areas of PRV labeled neurons projecting to Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas were lamina I, IV, V, VII, IX, X, intermediolateral nucleus(IML), intermediomedial nucleus(IMM) in thoracic segments. In lumbar segments, the overlap areas of PRV labeled neuron were lamina I, IV, V, VI, IX, X and IMM. In sacral segments, the overlap areas of PRV labeled neuron were lamina I, IV, V, VI, VII, IX, X. 3. In the brain, the overlap areas of PRV labeled neurons projecting to Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas were area postrema, nucleus tractus solitarius, caudoventrolateral reticular nu., medullary reticular nu., lateral paragigantocellular nu., C3 adrenalin cells, gigantocellular nu., raphe pallidus nu., raphe obscurus nu., ambiguus nu., raphe magnus nu., pontine reticular formation, A5 cell group, subcoeruleus nu., locus coeruleus, Barringnton's nu., $K{\ddot{o}}lliker$-Fuse nu., dorsal raphe nu., Edinger-Westphal nu., central gray matter, perifornical nu., dorsomedial hypothalamic nu., arcuate nu., lateral hypothalamic nu., paraventricular hypothalamic nu., hindlimb area. Conclusions : In conclusion, these results suggest that the interrelationship of meridian(spleen meridian), acupoints(Sp6 and Sp9) and viscera(pancreas) may be related the central autonomic centers.

Studies on the Relationship of the Central Neural Pathways to the Urinary Bladder and Wijung($BL_{40}$) (방광(膀胱)과 위중(委中)의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Kim, Ho;Lee, Kwang-Gyu;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.805-817
    • /
    • 2009
  • This study was to investigate central localization of neurons projecting to the urinary bladder and urinary bladder-related acupoints(Wijung, $BL_{40}$) and neurons of immunoreactive to hormones and hormone receptors regulating urinary bladder function by using peudorabies virus(PRV). In this experiment, Bartha's strain of pseudorabies virus was used in rats to trace central localization of urinary bladder-related neurons and urinary bladder-related acupoints($BL_{40}$) which can regulate urinary system. PRV was injected into the urinary bladder and acupoints($BL_{40}$) related urinary system. After six days survival of rats, mainly common labeled neurons projecting to the urinary bladder and urinary bladder-related acupoints were identified in spinal cord, medulla, pons and diencephalon by PRV immunohistochemical staining method. First-order PRV labeled neurons projecting to urinary bladder and urinary bladder-related acupoints were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled preganglionic neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in the lateral horn area(sacral parasympathetic nucleus and intermediolateral nucleus), lamina V-X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting to urinary bladder and Wijung($BL_{40}$) was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus of tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, Barrington's nucleus and periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the paraventricular nucleus and a few ones were in the lateral hypothalamic nucleus, posterior hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, median eminence, perifornical nucleus, periventricular nucleus and suprachiasmatic nucleus. In cerebral cortex, PRV labeled neurons were marked mostly in the frontal cortex, 1,2 area, hind limb area, agranular insular cortex. Immunoreactive neurons to Corticotropin releasiing factor(CRF), Corticotropin releasiing factor-receptor(CRF-R), c-fos and serotonin were a part of labeled areas among the virus-labeled neurons of urinary bladder and Wijung($BL_{40}$). The commonly labeled areas were nucleus tractus solitarius, area postrema, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), locus coeruleus, A5 cell group, Barrington,s nucleus, arcuate nucleus, paraventricular nucleus, frontal cortex 1, 2 area, hind limb, and perirhinal(agranular insular) cortex. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of urinary bladder-relate organs and it was revealed by tracing PRV labeled neurons projecting urinary bladder and urinary bladder-related acupoints. These commonly labeled areas often overlap with the neurons connected with hormones and hormone receptors related to urination.

Effect of adrenalectomy on gene expression of adrenoceptor subtypes in the hypothalamic paraventricular nucleus

  • Kam, Kyung-Yoon;Shin, Seung Yub;Han, Seong Kyu;Li, Long Hua;Chong, Wonee;Baek, Dae Hyun;Lee, So Yeong;Ryu, Pan Dong
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.207-215
    • /
    • 2004
  • It is well known that the hypothalamic-pituitary-adrenocortical (HPA) axis is under the negative feedback control of adrenal corticosteroids. Previous studies have suggested that glucocorticoids can regulate neuroendocrine cells in the paraventricular nucleus (PVN) by modulating catecholaminergic transmission, a major excitatory modulator of the HPA axis at the hypothalamic level. But, the effects of corticosteroids on the expression of adrenoceptor subtypes are not fully understood. In this work, we examined mRNA levels of six adrenoceptor subtypes (${\alpha}_{1A}$, ${\alpha}_{1B}$, ${\alpha}_{2A}$, ${\alpha}_{2B}$, ${\beta}_1$ and ${\beta}_2$) in the PVN of normal and adrenalectomized (ADX) rats. Total RNA ($2.5{\mu}g$) was extracted from PVN micropunches of brain slices ($500{\mu}m$) and analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The levels of corticotropin-releasing hormone (CRH) mRNA were increased in the ADX rats relative to normal rats, indicating that the PVN had been liberated from the negative feedback of corticosteroids. Among the six adrenoceptor subtypes examined, mRNA levels for ${\alpha}_{1B}$- and ${\beta}_1$-adrenoceptors were increased, but the level for ${\beta}_2$-adrenoceptors was decreased in the ADX rats. The mRNA levels for the other three subtypes and for the general and neuronal specific housekeeping genes, glyceroaldehyde-3-phosphate dehydrogenase (GAPDH) and N-enolase, respectively, were not changed in the ADX rats. In conclusion, the results indicate that adrenal steroids selectively regulate the gene expression of adrenoceptor subtypes in the PVN.

The Tissue Distribution of Nesfatin-1/NUCB2 in Mouse

  • Kim, Jinhee;Chung, Yiwa;Kim, Heejeong;Im, Eunji;Lee, Hyojin;Yang, Hyunwon
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.301-309
    • /
    • 2014
  • Nesfatin-1, an anorexic nucleobindin-2 (NUCB2)-derived hypothalamic peptide, controls appetite and energy metabolism. Recent studies show that nesfatin-1/NUCB2 is expressed not only in the brain but also in gastric and adipose tissues. Thus, we investigated the distributions of nesfatin-1/NUCB2 in various tissues of male and female mice by real-time PCR, western blotting, and immunohistochemical staining. Real-time PCR analyses showed that NUCB2 mRNA was predominantly expressed in the pituitary and at lower levels in the hypothalamus, spleen, thymus, heart, liver, and muscle of both male and female mice. Expression was much higher in reproductive organs, such as the testis, epididymis, ovary, and uterus, than in the hypothalamus. Western blot analysis of the nesfatin-1 protein level showed similar results to the real-time PCR analyses in both male and female mice. These results suggest that nesfatin-1/NUCB2 have widespread physiological effects in endocrine and non-endocrine organs. In addition, immunohistochemical staining revealed that nesfatin-1 was localized in interstitial cells, including Leydig cells and in the columnar epithelium of the epididymis. Nesfatin-1 was also expressed in theca cells and interstitial cells in the ovary and in epithelial cells of the endometrium and uterine glands in the uterus. These results suggest that nesfatin-1 is a novel potent regulator of steroidogenesis and gonadal function in male and female reproductive organs. Further studies are required to elucidate the functions of nesfatin-1 in various organs of male and female mice.

Effect of Corticosterone Pretreatment on the Production of LPS-Induced Inflammatory Mediators in Hepa1c1c-7 Cells (Hepa1c1c-7 Cell에서 리포폴리사카라이드로 유도된 염증성 매개인자 생산에 있어서 코르티코스테론 전처리 효과)

  • Chae, Byeong Suk
    • YAKHAK HOEJI
    • /
    • v.60 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • Endotoxemia induces production of inflammatory mediators and acute phase proteins, leading to multiorgan injury and systemic inflammation. Hypothalamic-pituitary-adrenal (HPA) axis activation and glucocorticoids (GCs) release modify endotoxemia-induced inflammatory responses. In the present study, we investigated whether pre-exposure of GCs influences endotoxin-induced production of inflammatory mediators in hepatocytes. Hepa1c1c-7 cells were pretreated with low concentrations of corticosterone for 24 h and then cultured without corticosterone in the presence or absence of LPS. Our results demonstrated that LPS alone significantly enhanced production of IL-6 and CRP but reduced vascular endothelial growth factor (VEGF) compared to controls. Combination of corticosterone pretreatment and LPS significantly upregulated production of IL-6, IL-$1{\beta}$, and VEGF but downregulated CRP compared to those in LPS alone. These findings suggest that in low concentration of corticosterone-preexposed hepatocytes, endotoxemia may induce upregulation of IL-6, IL-$1{\beta}$, VEGF and but downregulation of CRP.

Massive Calcified Cerebellar Pilocytic Astrocytoma with Rapid Recurrence : A Rare Case

  • Aydemir, Fatih;Kardes, Ozgur;Kayaselcuk, Fazilet;Tufan, Kadir
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.533-536
    • /
    • 2016
  • Pilocytic astrocytomas (PAs) are World Heath Organization Grade I tumors and are most common in children. PA calcification is not a common finding and has been reported more frequently in the optic nerve, hypothalamic/thalamus and superficially located cerebral tumors. We present a cerebellar PA in a 3-year-old male patient with cystic components and massive calcification areas. The residual tumor grew rapidly after the first operation, and the patient was operated on again. A histopathological examination revealed polar spongioblastoma-like cells. Massive calcification is not a common feature in PAs and can lead to difficulties in radiological and pathological differential diagnoses.

Induction of Two Mammalian PER Proteins is Insufficient to Cause Phase Shifting of the Peripheral Circadian Clock

  • Lee, Joon-Woo;Cho, Sang-Gil;Cho, Jun-Hyung;Kim, Han-Gyu;Bae, Ki-Ho
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.153-160
    • /
    • 2005
  • Most living organisms exhibit the circadian rhythm in their physiology and behavior. Recent identification of several clock genes in mammals has led to the molecular understanding of how these components generate and maintain the circadian rhythm. Many reports have implicated the photic induction of either mPer1 or mPer2 in the hypothalamic region called the suprachiasmatic nucleus (SCN) to phase shift the brain clock. It is now established that peripheral tissues other than the brain also express these clock genes and that the clock machinery in these tissues work in a similar way to the SCN clock. To determine the role of the two canonical clock genes, mPer1 and mPer2, in the peripheral clock shift, stable HEK293EcR cell lines that can be induced and stably express these proteins were prepared. By regulating the expression of these proteins, it could be shown that induction of the clock genes, either mPer1 or mPer2 alone is not sufficient to cause clock phase shifting in these cells. Our real-time PCR analysis on these cells indicates that the induction of mPER proteins dampens the expression of the clock-specific transcription factor mBmal1. Altogether, our present data suggest that mPer1 and mPer2 may not function in clock shift or take part in differential roles on the peripheral circadian clock.

Localization of the Neurons Projecting to the Gallbladder Meridian (족소양담경(足少陽膽經)에서 투사(投射)되는 신경원(神經元)의 표지부위(標識部位)에 대한 연구(硏究))

  • Ryuk Sang-Won;Lee Kwang-Gyu;Lee Sang-Ryoung;Kim Jum-Young;Lee Chang-Hyun;Lee Bong-Hee
    • Korean Journal of Acupuncture
    • /
    • v.17 no.1
    • /
    • pp.101-121
    • /
    • 2000
  • The purpose of this morphological studies was to investigate the relation to the meridian, acupoint and nerve. The common locations of the spinal cord and brain projecting to the the gallbladder, GB34 and common peroneal nerve were observed following injection of transsynaptic neurotropic virus, pseudorabies virus(PRV), into the gallbladder, GB34 and common peroneal nerve of the rabbit. After survival times of 96 hours following injection of PRV, the thirty rabbits were perfused, and their spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV immunohistochemical staining method, and observed with light microscope. The results were as follows: 1. In spinal cord, PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in thoracic, lumbar and sacral spinal segments. Densely labeled areas of each spinal cord segment were founded in lamina V, VII, X, intermediolateral nucleus and dorsal nucleus. 2. In medulla oblongata, The PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, rostroventrolateral reticular nucleus, medullary reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus, gigantocellular nucleus, lateral paragigantocellular nucleus, principal sensory trigeminal nucleus and spinal trigeminal nucleus. 3. In Pons, PRV labeled neurons were parabrachial nucleus, Kolliker-Fuse nucleus and cochlear nucleus. 4. In midbrain, PRV labeled neurons were founded in central gray matter and substantia nigra. 5. In diencephalon, PRV labeled neurons were founded in lateral hypothalamic nucleus, suprachiasmatic nucleus and paraventricular hypothalamic nucleus. 6. In cerebral cortex, PRV labeled neuron were founded in hind limb area.This results suggest that PRV labeled common areas of the spinal cord projecting to the gallbladder, GB34 and common peroneal nerve may be first-order neurons related to the somatic sensory, viscero-somatic sensory and symapathetic preganglionic neurons, and PRV labeled common area of the brain may be first, second and third-order neurons response to the movement of smooth muscle in gallbladder and blood vessels.These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory system monitoring the internal environment, including both visceral sensation and various chemical and physical qualities of the bloodstream. The present morphological results provide that gallbladder meridian and acupoint may be related to the central autonomic pathways.

  • PDF