• Title/Summary/Keyword: Hypersurface

Search Result 256, Processing Time 0.022 seconds

TRANSNORMAL SYSTEMS ON $R_{1}^{n+1}$

  • Kwang Sung Park;Koon Chan Kim;Young Soo Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.109-112
    • /
    • 1997
  • In this paper, we study on a classification of hypersurfaces given by tansnormal functions on $R^{n+1}_1$. If M is a level set of a transnormal function on $R^{n+1}_1$, then it is one of a hyperplane, a cylinder around k-plane, a pseudo-sphere and a pseudo-hyperbolic space.

  • PDF

REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WHOSE SHAPE OPERATOR IS OF CODAZZI TYPE IN GENERALIZED TANAKA-WEBSTER CONNECTION

  • Cho, Kyusuk;Lee, Hyunjin;Pak, Eunmi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.57-68
    • /
    • 2015
  • In this paper, we give a non-existence theorem of Hopf hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m{\geq}3$, whose shape operator is of Codazzi type in generalized Tanaka-Webster connection $\hat{\nabla}^{(k)}$.

INTEGRAL CURVES OF THE CHARACTERISTIC VECTOR FIELD ON CR-SUBMANIFOLDS OF MAXIMAL CR-DIMENSION

  • Kim, Hyang Sook;Pak, Jin Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.107-118
    • /
    • 2017
  • In this paper we study CR-submanifolds of maximal CR-dimension by investigating extrinsic behaviors of integral curves of characteristic vector field on them. Also we consider the notion of ruled CR-submanifold of maximal CR-dimension which is a generalization of that of ruled real hypersurface and find some characterizations of ruled CR-submanifold of maximal CR-dimension concerning extrinsic shapes of integral curves of the characteristic vector field and those of CR-Frenet curves.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 OF A COMPLEX PROJECTIVE SPACE IN TERMS OF THE JACOBI OPERATOR

  • HER, JONG-IM;KI, U-HANG;LEE, SEONG-BAEK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.93-119
    • /
    • 2005
  • In this paper, we characterize some semi-invariant sub-manifolds of codimension 3 with almost contact metric structure ($\phi$, $\xi$, g) in a complex projective space $CP^{n+1}$ in terms of the structure tensor $\phi$, the Ricci tensor S and the Jacobi operator $R_\xi$ with respect to the structure vector $\xi$.

FINITENESS OF INFINITESIMAL DEFORMATIONS OF CR MAPPINGS OF CR MANIFOLDS OF NONDEGENERATE LEVI FORM

  • Cho, Chung-Ki;Han, Chong-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.91-102
    • /
    • 2002
  • Let M and N be CR manifolds with nondegenerate Levi forms of hypersurface type of dimension 2m + 1 and 2n + 1, respectively, where 1 $\leq$ m $\leq$ n. Let f : M longrightarrow N be a CR mapping. Under a generic assumption we construct a complete system of finite order for the infinitesimal deformations of f. In particular, we prove the space of infinitesimal deformations of f forms a finite dimensional Lie algebra.

ON CHARACTERIZATIONS OF REAL HYPERSURFACES WITH ${\eta}-PARALLEL$ RICCI OPERATORS IN A COMPLEX SPACE FORM

  • Kim, In-Bae;Park, Hye-Jeong;Sohn, Woon-Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.235-244
    • /
    • 2006
  • We shall give a characterization of a real hypersurface M in a complex space form Mn(c), $c\;{\neq}\;0$, whose Ricci operator and structure tensor commute each other on the holomorphic distribution of M, and the Ricci operator is ${\eta}-parallel$.

L2 HARMONIC 1-FORMS ON SUBMANIFOLDS WITH WEIGHTED POINCARÉ INEQUALITY

  • Chao, Xiaoli;Lv, Yusha
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.583-595
    • /
    • 2016
  • In the present note, we deal with $L^2$ harmonic 1-forms on complete submanifolds with weighted $Poincar{\acute{e}}$ inequality. By supposing submanifold is stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^2$ harmonic 1-forms, which are some extension of the results of Kim and Yun, Sang and Thanh, Cavalcante Mirandola and $Vit{\acute{o}}rio$.

ON LIGHTLIKE HYPERSURFACES OF A GRW SPACE-TIME

  • Kang, Tae-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.863-874
    • /
    • 2012
  • We provide a study of lightlike hypersurfaces of a generalized Robertson-Walker (GRW) space-time. In particular, we investigate lightlike hypersurfaces with curvature invariance, parallel second fundamental forms, totally umbilical second fundamental forms, null sectional curvatures and null Ricci curvatures, respectively.

STABLE MINIMAL HYPERSURFACES WITH WEIGHTED POINCARÉ INEQUALITY IN A RIEMANNIAN MANIFOLD

  • Nguyen, Dinh Sang;Nguyen, Thi Thanh
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.123-130
    • /
    • 2014
  • In this note, we investigate stable minimal hypersurfaces with weighted Poincar$\acute{e}$ inequality. We show that we still get the vanishing property without assuming that the hypersurfaces is non-totally geodesic. This generalizes a result in [2].