• Title/Summary/Keyword: Hyperspectral reflectance

Search Result 95, Processing Time 0.033 seconds

Apple Quality Measurement Using Hyperspectral Reflectance and Fluorescence Scattering (하이퍼 스펙트랄 반사광 및 형광 산란을 이용한 사과 품질 측정)

  • Noh, Hyun-Kwon;Lu, Renfu
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Hyperspectral reflectance and fluorescence scattering have been researched recently for measuring fruit post-harvest quality and condition. And they are promising for nondestructive detection of fruit quality. The objective of this research was to develop a model, which measure the quality of apple by using hyperspectral reflectance and fluorescence. A violet laser (408 nm) and a quartz tungsten halogen light were used as light sources for generating laser induced fluorescence and reflectance scattering in apples, respectively. The laser induced fluorescence and reflectance of 'Golden Delicious' apples were measured by using a hyperspectral imaging system. Fruit firmness, soluble solids and acid content were measured using standard destructive methods. Principal component analyses were performed to extract critical information from both hyperspectral reflectance and fluorescence data and this information was then related to fruit quality indexes. The fluorescence models had poorer predictions of the three quality indexes than the reflectance models. However, the prediction models of integrating fluorescence and reflectance performed consistently better than the individual models of either reflectance or fluorescence. The correlation coefficient for fruit firmness, soluble solid content, and tillable acidity from the integrated model was 0.86, 0.75, and 0.66 respectively. Also the standard errors were 6.97 N, 1.05%, and 0.07% respectively.

Analysis and Comparison of Rock Spectroscopic Information Using Drone-Based Hyperspectral Sensor

  • Lee, So-Jin;Jeong, Gyo-Cheol;Kim, Jong-Tae
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.479-492
    • /
    • 2021
  • We conducted a fundamental study on geological and rock detection via drone-based hyperspectral imaging on various types of small rock samples and interpreted the obtained information to compare and classify rocks. Further, we performed hyperspectral imaging on ten rocks, and compared the peak data value and reflectance of rocks. Results showed a difference in the reflectance and data value of the rocks, indicating that the rock colors and minerals vary or the reflectance is different owing to the luster of the surface. Among the rocks, limestone used for hyperspectral imaging is grayish white, inverted rock contains various sizes and colors in the dark red matrix, and granite comprises colorless minerals, such as white, black, gray, and colored minerals, resulting in a difference in reflectance. The reflectance of the visible ray range in ten rocks was 16.00~85.78%, in the near infrared ray range, the average reflectance was 23.94~86.43%, the lowest in basalt and highest in marble in both cases. This is because of the pores in basalt, which caused the difference in reflectance.

Use of Terrestrial Hyperspectral Sensors for Analyzing Spectral Reflectance Characteristics of Concrete

  • Lee, Jin Duk;Lee, Sung Soon;Sim, Jung Bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.185-190
    • /
    • 2014
  • The purpose of this research is to extract spectral reflectance characteristics of concretes through basic experiment on concrete specimens and site experiment on actual concrete structures using a field portable spectrometer and a VNIR hyperspectral sensor. A spectrometer (GER-3700) and a VNIR hyperspectral camera (AisaEagle VNIR Hyperspectral Camera) were utilized for extracting spectral characteristics of concrete specimens. Concretes normally show similar patterns that have correlation above 80%, while the high-strengthened concretes display very different results from the normal-strength concretes. We also made a certain conclusion in the laboratory experiment on concrete specimens that both the spectrometer and the VNIR camera vary in spectral reflectance depending on concrete strengths.

Determination of Germination Quality of Cucumber (Cucumis Sativus) Seed by LED-Induced Hyperspectral Reflectance Imaging

  • Mo, Changyeun;Lim, Jongguk;Lee, Kangjin;Kang, Sukwon;Kim, Moon S.;Kim, Giyoung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.318-326
    • /
    • 2013
  • Purpose: We developed a viability evaluation method for cucumber (Cucumis sativus) seed using hyperspectral reflectance imaging. Methods: Reflectance spectra of cucumber seeds in the 400 to 1000 nm range were collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) was developed to predict viable and non-viable seeds. Various ranges of spectra induced by four types of LEDs (Blue, Green, Red, and RGB) were investigated to develop the classification models. Results: PLS-DA models for spectra in the 600 to 700 nm range showed 98.5% discrimination accuracy for both viable and non-viable seeds. Using images based on the PLS-DA model, the discrimination accuracy for viable and non-viable seeds was 100% and 99%, respectively Conclusions: Hyperspectral reflectance images made using LED light can be used to select high quality cucumber seeds.

Study on Bruise Detection of 'Fuji' apple using Hyperspectral Reflectance Imagery (초분광 반사광 영상을 이용한 '후지' 사과의 멍 검출에 관한 연구)

  • Cho, Byoung-Kwan;Baek, In-Suck;Lee, Nam-Geun;Mo, Chang-Yeun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.484-490
    • /
    • 2011
  • Defects exist underneath the fruit skin are not easily discernable by using conventional color imaging technique in the visible wavelength ranges. Development of sensitive detection methods for the defects is necessary to ensure accurate quality sorting of fruits. Hyperspectral imaging techniques, which combine the features of image and spectroscopy to acquire spatial and spectral information simultaneously, have demonstrated good potentials for identifying and detecting anomalies on biological substances. In this study, a high spatial resolution hyperspectral reflectance technique was presented as a tool for detecting bruises on apple. The two-band ratio (494 nm / 952 nm) and simple threshold methods were applied to investigate the feasibility of discriminating the bruises from sound tissue of apple. The pixel wise accuracy of the discrimination was 74%. The resultant images processed with selected wavebands and morphologic algorithm distinctively showed the early stages of bruises on apple which were not discernable by naked eyes as well as a conventional color camera. Results demonstrated good potential of the hyperspectral reflectance imaging for detection of bruises on apple.

Reflectance Measurements of Soil Variability

  • Sudduth, K.A.;Hong, S.Y.;Hummel, J.W.;Kitchen, N.R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1194-1196
    • /
    • 2003
  • Variations in soil physical and chemical properties can affect agricultural productivity and the environmental implications of crop production. These variations are present and may be important at regional, field, and sub-field (precision agriculture) scales. Because traditional measurements are time-consuming and expensive, reflectance-based estimates of soil properties such as texture, organic matter content, water content, and nutrient status are attractive. Soil properties have been related to reflectance measured with laboratory, in-field, airborne, and satellite sensors. Both multispectral and hyperspectral instruments have been used, with both natural and artificial illumination. Varying levels of accuracy have been obtained, with the best results (r > 0.95) using hyperspectral reflectance data to estimate soil organic matter and water content.

  • PDF

Hyperspectral Image Recognition for Tumor Detection (하이퍼스펙트럴 영상 인식을 통한 종양 검출)

  • 김한열;김인택
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1545-1548
    • /
    • 2003
  • This paper presents a method for detecting skin tumors on chicken carcasses using hyperspectral images. It utilizes both fluorescence and reflectance image information in hyperspectral images. A detection system that is built on this concept can increase detection rate and reduce processing time. Chicken carcasses are examined first using band ratio FCM information of fluorescence image and it results in candidate regions for skin tumor. Next classifier selects the real tumor spots using PCA components information of reflectance image from the candidate regions.

  • PDF

Correlation Analysis of Reflectance and Turbidity through Spectral Characteristics of Near-Infrared (근적외선의 분광특성 분석을 통한 반사율과 탁도의 상관관계 분석)

  • Lee, So-Jin;Jeong, Gyo-Cheol;Lee, Chang-Ju;Kim, Jong-Tae
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • This study analyzed the relationship between water turbidity and its reflectance, as measured using hyperspectral imaging. First, samples of turbid water were generated in boxes. This was followed by drone-based hyperspectral imaging and analysis of the correlation between the samples' measured turbidity and hyperspectral reflectance. The nine boxes for turbidity measurement were made of black acrylic that absorbed all light turbidity was induced using soil collected near Changhacheon, which causes turbidity in Imha Lake. The results indicate that the reflectance of wavelengths in the near-infrared region followed a pattern of increase with increasing soil content for each box. Analysis of this correlation between the turbidity and average reflectance measured in each box yielded a very high R2 value of 0.8702, indicating that reflectance is a suitable proxy for turbidity.

Detection Algorithm for Cracks on the Surface of Tomatoes using Multispectral Vis/NIR Reflectance Imagery

  • Jeong, Danhee;Kim, Moon S.;Lee, Hoonsoo;Lee, Hoyoung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.199-207
    • /
    • 2013
  • Purpose: Tomatoes, an important agricultural product in fresh-cut markets, are sometimes a source of foodborne illness, mainly Salmonella spp. Growth cracks on tomatoes can be a pathway for bacteria, so its detection prior to consumption is important for public health. In this study, multispectral Visible/Near-Infrared (NIR) reflectance imaging techniques were used to determine optimal wavebands for the classification of defect tomatoes. Methods: Hyperspectral reflectance images were collected from samples of naturally cracked tomatoes. To classify the resulting images, the selected wavelength bands were subjected to two-band permutations, and a supervised classification method was used. Results: The results showed that two optimal wavelengths, 713.8 nm and 718.6 nm, could be used to identify cracked spots on tomato surfaces with a correct classification rate of 91.1%. The result indicates that multispectral reflectance imaging with optimized wavebands from hyperspectral images is an effective technique for the classification of defective tomatoes. Conclusions: Although it can be susceptible to specular interference, the multispectral reflectance imaging is an appropriate method for commercial applications because it is faster and much less expensive than Near-Infrared or fluorescence imaging techniques.

A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery (드론 초분광 영상 활용을 위한 절대적 대기보정 방법의 비교 분석)

  • Jeon, Eui-ik;Kim, Kyeongwoo;Cho, Seongbeen;Kim, Shunghak
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.203-215
    • /
    • 2019
  • As hyperspectral sensors that can be mounted on drones are developed, it is possible to acquire hyperspectral imagery with high spatial and spectral resolution. Although the importance of atmospheric correction has been reduced since imagery of drones were acquired at a low altitude,studies on the conversion process from raw data to spectral reflectance should be done for studies such as estimating the concentration of surface materials using hyperspectral imagery. In this study, a vicarious radiometric calibration and an atmospheric correction algorithm based on atmospheric radiation transfer model were applied to hyperspectral data of drone and the results were compared and analyzed. The vicarious calibration method was applied to an empirical line calibration using the spectral reflectance of a tarp made of uniform material. The atmospheric correction algorithm used ATCOR-4 based Modran-5 that was widely used for the atmospheric correction of aerial hyperspectral imagery. As a result of analyzing the RMSE of the difference between the reference reflectance and the correction, the vicarious calibration using the tarp in a single period of hyperspectral image was the most accurate, but the atmospheric correction was possible according to the application purpose of using hyperspectral imagery. If the correction process of normalized spectral reflectance is carried out through the additional vicarious calibration for imagery from multiple periods in the future, accurate analysis using hyperspectral drone imagery will be possible.